FLOOD INSURANCE STUDY FEDERAL EMERGENCY MANAGEMENT AGENCY

VOLUME 1 OF 3

MONMOUTH COUNTY, NEW JERSEY Alljurisdictions

COMMUNITY NAME	NUMBER	COMMUNITY NAME	NUMBER	COMMUNITY NAME	NUMBER
ABERDEEN, TOWNSHIP OF	340312	HIGHLANDS, BOROUGH OF	345297	NEPTUNE, TOWNSHIP OF	340317
Allenhurst, Borough of	340283	HOLMDEL, TOWNSHIP OF	340300	OCEAN, TOWNSHIP OF	340319
Allentown, Borough of	340284	HOWELL, TOWNSHIP OF	340301	OCEANPORT, BOROUGH OF	340320
ASBURY PARK, CITY OF	340285	INTERLAKEN, BOROUGH OF	340302	RED BANK, BOROUGH OF	340321
ATLANTIC HIGHLANDS, BOROUGH OF	340286	KEANSBURG, BOROUGH OF	340303	ROOSEVELT, BOROUGH OF	340322
AVON-BY-THE-SEA, BOROUGH OF	340287	KEYPORT, BOROUGH OF	340304	RUMSON, BOROUGH OF	345316
Belmar, Borough of	345283	LAKE COMO, BOROUGH OF	340328	SEA BRIGHT, BOROUGH OF	345317
BRADLEY BEACH, BOROUGH OF	340289	LITTLE SILVER, BOROUGH OF	340305	SEA GIRT, BOROUGH OF	340325
BRIELLE, BOROUGH OF	340290	LOCH ARBOUR, VILLAGE OF	340306	SHREWSBURY, BOROUGH OF	340326
COLTS NECK, TOWNSHIP OF	340291	LONG BRANCH, CITY OF	340307	*SHREWSBURY, TOWNSHIP OF	340002
DEAL, BOROUGH OF	340292	MANALAPAN, TOWNSHIP OF	340308	SPRING LAKE HEIGHTS, BOROUGH OF	340330
EATONTOWN, BOROUGH OF	340293	Manasquan, Borough of	345303	SPRING LAKE, BOROUGH OF	340329
ENGLISHTOWN, BOROUGH OF	340294	MARLBORO, TOWNSHIP OF	340310	TINTON FALLS, BOROUGH OF	340318
FAIR HAVEN, BOROUGH OF	340295	MATAWAN, BOROUGH OF	340311	UNION BEACH, BOROUGH OF	340331
FARMINGDALE, BOROUGH OF	340296	MIDDLETOWN, TOWNSHIP OF	340313	UPPER FREEHOLD, TOWNSHIP OF	340332
FREEHOLD, BOROUGH OF	345536	MILLSTONE, TOWNSHIP OF	340314	WALL, TOWNSHIP OF	340333
FREEHOLD, TOWNSHIP OF	340297	MONMOUTH BEACH, BOROUGH OF	340315	WEST LONG BRANCH, BOROUGH OF	340334
HAZLET, TOWNSHIP OF	340298	NEPTUNE CITY, BOROUGH OF	340316		

*No Special Flood Hazard Areas Identified

REVISED: JUNE 20, 2018 FLOOD INSURANCE STUDY NUMBER 34025CV001B

Version Number 2.3.3.2

NOTICE TO FLOOD INSURANCE STUDY USERS

Communities participating in the National Flood Insurance Program have established repositories of flood hazard data for floodplain management and flood insurance purposes. This Flood Insurance Study (FIS) may not contain all data available within the repository. It is advisable to contact the community repository for any additional data.

Part or all of this FIS may be revised and republished at any time. In addition, part of this FIS may be revised by the Letter of Map Revision process, which does not involve republication or redistribution of the FIS. It is, therefore, the responsibility of the user to consult with community officials and to check the community repository to obtain the most current FIS components.

Initial Countywide FIS Effective Date: September 25, 2009

Revised Countywide FIS Date: June 20, 2018 – to incorporate new detailed coastal flood hazard analyses, to add Base Flood Elevations, and Special Flood Hazard Areas; to change zone designations and Special Flood Hazard Areas; to update corporate limits, and to reflect updated topographic information.

TABLE OF CONTENTS – Volume 1 – June 20, 2018

			Page
1.0	INTI	RODUCTION	1
	1.1	Purpose of Study	1
	1.2	Authority and Acknowledgments	1
	1.3	Coordination	8
2.0	ARE	EA STUDIED	10
	2.1	Scope of Study	10
	2.2	Community Description	14
	2.3	Principal Flood Problems	15
	2.4	Flood Protection Measures	18
3.0	ENG	SINEERING METHODS	19
	3.1	Riverine Hydrologic Analyses	19
	3.2	Riverine Hydraulic Analyses	62
	3.3	Coastal Hydrologic Analyses	71
	3.4	Coastal Hydraulic Analyses	74
	3.5	Vertical Datum	87
4.0	FLO	ODPLAIN MANAGEMENT APPLICATIONS	88
	4.1	Floodplain Boundaries	88
	4.2	Floodways	93
5.0	INSU	URANCE APPLICATIONS	158
6.0	<u>FLO</u>	OD INSURANCE RATE MAP	159
7.0	OTH	IER STUDIES	166
8.0	LOC	CATION OF DATA	166
9.0	BIBI	LIOGRAPHY AND REFERENCES	166
10.0	REV	VISION DESCRIPTIONS	184

i

TABLE OF CONTENTS – Volume 1 (continued) – June 20, 2018

FIGURES

Figure 1 – Frequency Discharge, Drainage Area Curves	36-61
Figure 2 – Transect Location Map	76-77
Figure 3 – Transect Schematic	86
Figure 4 – Floodway Schematic	94

TABLES

Table 1 – Initial and Final CCO Meetings	9-10
Table 2 – Flooding Sources Studied by Detailed Methods	10-12
Table 3 – Stream Name Changes	12-13
Table 4 – Letters of Map Correction	14
Table 5 – Summary of Discharges	25-35
Table 6 – Summary of Stillwater Elevations	62
Table 7 – Manning's "n" Values	67-69
Table 8 – Parameter Values for Surge Evaluation	72
Table 9 – Summary of Coastal Stillwater Elevations	73-74
Table 10 – Transect Descriptions	78-83
Table 11 – Transect Data Table	84-86
Table 12 – Floodway Data	95-157
Table 13 – Community Map History	160-165

TABLE OF CONTENTS – Volume 2 – September 25, 2009

EXHIBITS

Exhibit 1 – Flood Profiles	
Applegates Creek	Panel 01P
Ardena Brook	Panel 02P
Bannen Meadow Brook	Panel 03P
Barclay Brook	Panels 04P-05P
Barren Neck Creek	Panel 06P
Betty Brook	Panels 07P-08P
Big Brook (Downstream Reach)	Panel 09P
Big Brook (Upstream Reach)	Panels 10P-11P
Big Brook Tributary H	Panel 12P
Burkes Creek	Panel 13P
Clavpit Creek	Panel 14P
Comptons Creek	Panel 15P
Cranberry Brook	Panel 16P
Deal Lake	Panel 17P
Deal Tributary 1	Panel 18P
Deal Tributary 2	Panel 19P
Deal Tributary 3	Panel 20P
Deal Tributary 3A	Panel 21P
Deal Tributary 4	Panel 22P
Deal Tributary 4A	Panel 23P
Debois Creek	Panels 24P-25P
Debois Creek Tributary	Panel 26P
Deep Run	Panels 27P-28P
Deep Run Tributary A	Panel 29P
Deep Run Tributary B	Panels 30P-31P
Deep Run Tributary C	Panel 32P
Doctors Creek	Panels 33P-34P
East Creek	Panels 35P-36P
Flat Creek	Panels 37P-38P
Gander Brook	Panel 39P
Gravelly Brook	Panels 40P-43P
Gravelly Run	Panel 44P
Groundhog Brook	Panel 45P
Hannabrand Brook	Panels 46P-47P
Haystack Brook	Panels 48P-50P
Heroys Pond Creek	Panels 51P-52P
Hockhockson Brook	Panel 53P
Hog Swamp Brook	Panels 54P-60P
Hollow Brook	Panels 61P-64P
Indian Run	Panel 65P
Judas Creek (Downstream Reach)	Panel 66P
Judas Creek (Upstream Reach)	Panel 67P
Jumping Brook 1	Panels 68P-69P

Exhibit 1 – Flood Profiles (continued)

Jumping Brook 2	Panels	70P-74P
Little Silver Creek	Panels	75P-76P
Little Silver Tributary A	Panel	77P
Little Silver Tributary 1	Panels	78P-79P
Little Silver Tributary 2	Panels	80P-81P
Little Silver Tributary 2A	Panel	82P
Little Silver Tributary 2B	Panel	83P
Long Brook	Panels	84P-85P
Mac's Brook	Panel	86P
Mahoras Brook	Panels	87P-89P
Manalapan Brook	Panels	90P-98P
Manalapan Brook Tributary A	Panels	99P-100P
Manalapan Brook Tributary B	Panel	101P
Manasquan River	Panels	102P-105P
Manasquan River Tributary A	Panel	106P
Manasquan River Tributary B	Panels	107P-108P
Manasquan River Tributary C	Panels	109P-110P

TABLE OF CONTENTS - Volume 3 - September 25, 2009

Exhibit 1 – Flood Profiles (continued)	
Marl Brook	Panel 111P
Matawan Creek	Panels 112P-115P
Matchaponix Brook	Panels 116P-117P
McClees Creek	Panels 118P-119P
McGellairds Brook	Panels 120P-124P
Metedeconk River North Branch	Panels 125P-130P
Milford Brook	Panels 131P-135P
Millstone River	Panels 136P-139P
Mine Brook	Panels 140P-141P
Miry Bog Brook	Panel 142P
Mohingson Brook	Panels 143P-144P
Monascunk Creek	Panels 145P-146P
Musquash Brook	Panels 147P-148P
Nut Swamp Brook	Panels 149P-150P
Parkers Creek	Panels 151P-153P
Parkers Creek North Branch	Panel 154P
Pine Brook 1	Panels 155P-156P
Pine Brook 2	Panels 157P-160P
Pine Brook 2 Tributary C	Panel 161P
Polypod Brook	Panel 162P
Poly Pond Brook	Panel 163P
Poplar Brook	Panels 164P-170P
Poplar Brook Tributary 1	Panel 171P
Poplar Brook Tributary 2	Panel 172P

Exhibit 1 – Flood Profiles (continued)		
Poplar Brook Tributary 3	Panel	173P
Poricy Brook	Panels	174P-175P
Ramanessin Brook	Panels	176P-179P
Roberts Swamp Brook		
(Downstream Reach)	Panel	180P
Roberts Swamp Brook		
(Upstream Reach)	Panel	181P
Rocky Brook (Downstream	Panel	182P
Reach)		1021
Rocky Brook (Upstream Reach)	Panels	183P-184P
Shark River	Panels	185P-187P
Shark River Tributary D	Panels	188P-189P
Shark River Tributary E	Panel	190P
Shrewsbury River	Panel	191P
Still House Brook	Panels	192P-193P
Swimming River	Panels	194P-195P
Tepehemus Brook	Panels	196P-198P
Tepehemus Brook South Branch	Panel	199P
Toms River	Panels	200P-202P
Town Brook	Panels	203P-206P
Town Neck Creek	Panel	207P
Turtle Mill Brook	Panels	208P-209P
Waackaack Creek	Panels	210P-213P
Wampum Brook	Panel	214P
Watson Creek	Panel	215P
Weamaconk Creek	Panels	216P-220P
Weamaconk Creek Tributary	Panel	221P
Wells Brook	Panels	222P-224P
Wenrock Brook	Panels	225P-226P
Whale Pond Brook	Panels	227P-228P
Whale Pond Brook Tributary 1	Panel	229P
Whale Pond Brook Tributary ?	Panel	230P
Willow Brook	Panels	231P-235P
Willow Brook Fast Branch	Panel	236P
Willow Brook Tributary F	Panels	2301 237P-238P
Willow Brook Tributary G	Panel	239P-240P
White Brook	Panels	2371-2401 241P-243P
Wreek Pond Brook Fast Branch	Panel	2411-2451 244P
Vellow Brook	Panels	2441 $245P_{2}47P$
Vellow Brook 2	Danal	2431-2471 248D
Vellow Brook 2 Tributory	Danal	2701 2/0P
Vollow Brook Tributary	Danal	2791 250D
I CHOW DIOUK ITHUUIALY K Vollow Drools Tributary I	Donala	250F
renow brook indulary L	raneis	231 F- 232 P

Exhibit 2 – Flood Insurance Rate Map Index Flood Insurance Rate Map

FLOOD INSURANCE STUDY MONMOUTH COUNTY, NEW JERSEY (ALL JURISDICTIONS)

1.0 INTRODUCTION

1.1 Purpose of Study

This countywide Flood Insurance Study (FIS) investigates the existence and severity of flood hazards in, or revises and updates previous FISs/Flood Insurance Rate Maps (FIRMs) for the geographic area of Monmouth County, New Jersey, including: the Boroughs of Allenhurst, Allentown, Atlantic Highlands, Avon-by-the-Sea, Belmar, Bradley Beach, Brielle, Deal, Eatontown, Englishtown, Fair Haven, Farmingdale, Freehold, Highlands, Interlaken, Keansburg, Keyport, Lake Como, Little Silver, Manasquan, Matawan, Monmouth Beach, Neptune City, Oceanport, Red Bank, Roosevelt, Rumson, Sea Bright, Sea Girt, Shrewsbury, Spring Lake, Spring Lake Heights, Tinton Falls, Union Beach and West Long Branch; the Cities of Asbury Park and Long Branch; the Townships of Aberdeen, Colts Neck, Freehold, Hazlet, Holmdel, Howell, Manalapan, Marlboro, Middletown, Millstone, Neptune, Ocean, Shrewsbury, Upper Freehold and Wall; and the Village of Loch Arbour (hereinafter referred to collectively as Monmouth County). The Borough of Freehold and the Township of Shrewsbury are non-floodprone.

This FIS aids in the administration of the National Flood Insurance Act of 1968 and the Flood Disaster Protection Act of 1973. This FIS has developed flood risk data for various areas of the county that will be used to establish actuarial flood insurance rates. This information will also be used by Monmouth County to update existing floodplain regulations as part of the Regular Phase of the National Flood Insurance Program (NFIP), and will also be used by local and regional planners to further promote sound land use and floodplain development. Minimum floodplain management requirements for participation in the NFIP are set forth in the Code of Federal Regulations at 44 CFR, 60.3.

In some States or communities, floodplain management criteria or regulations may exist that are more restrictive or comprehensive than the minimum Federal requirements. In such cases, the more restrictive criteria take precedence and the State (or other jurisdictional agency) will be able to explain them.

1.2 Authority and Acknowledgments

The sources of authority for this FIS are the National Flood Insurance Act of 1968 and the Flood Disaster Protection Act of 1973.

This FIS was prepared to include all communities within Monmouth County in a countywide format. Information on the authority and acknowledgments for each jurisdiction included in this countywide FIS, as compiled from their previously printed FIS reports, is shown below.

Aberdeen, Township of:	the hydrologic and hydraulic analyses in the FIS report dated September 18, 1984, were prepared by Richard Browne Associates, for the Federal Emergency Management Agency (FEMA), under Contract No. H-6809. This work was completed in November 1982. The wave height analysis was performed by Dewberry & Davis for FEMA, under Contract No. EMW-C-0543. This work was
	completed in July 1983.

- Allenhurst, Borough of: the hydrologic and hydraulic analyses in the FIS report dated September 1978 were performed by Tetra Tech, Inc., for the Federal Insurance Administration (FIA) under Contract No. H-3830. This work was completed in September 1977
- Allentown, Borough of: the hydrologic and hydraulic analyses in the FIS report dated March 16, 1981, were conducted by Gannett Fleming Corddry and Carpenter, Inc., under subcontract to the State of New Jersey, Department of Environmental Protection (NJDEP), Division of Water Resources, for the FIA under Contract No. H-4623. This work was completed in March 1980.
- Asbury Park, City of: the hydrologic and hydraulic analyses in the FIS report dated March 15, 1983, represent a revision of the original analyses by Tetra Tech, Inc., for FEMA under Contract No. H-3830. The updated analyses were also prepared by Tetra Tech, Inc., under agreement with FEMA. This work was completed in August 1981.
- Atlantic Highlands, Borough of: the wave height analysis in the FIS report dated January 5, 1984, was prepared by Dewberry & Davis for FEMA, under Contract No. EMW-C-0543. This work was completed in May 1983.
- Avon-by-the-Sea, Borough of: the hydrologic and hydraulic analyses in the FIS report dated January 5, 1983, were prepared by Tetra Tech, Inc., for FEMA under Contract No. H-3830. The updated version was prepared by Tetra Tech, Inc. as well, for FEMA under Contract No. H-3830. This work was completed in August 1981.
- Belmar, Borough of: the wave height analysis in the FIS report dated September 1, 1983, was prepared by Dewberry &

	Davis for FEMA, under Contract No. EMW-C-0543. This work was completed in December 1982.
Bradley Beach, Borough of:	the hydrologic and hydraulic analyses in the FIS report dated December 15, 1982, represent a revision of the original analyses performed by Tetra Tech, Inc., for FEMA under Contract No. H-3830. The updated version was prepared by Tetra Tech, Inc. for FEMA under Contract No. H-3830. This work was completed in August 1981.
Brielle, Borough of:	the hydrologic and hydraulic analyses in the FIS report dated March 30, 1983, represent a revision of the original analyses performed by Tetra Tech, Inc., for FEMA under Contract No. H-3830. The updated version was also prepared by Tetra Tech, Inc., under agreement with FEMA. This work was completed in August 1981.
Colts Neck, Township of:	the hydrologic and hydraulic analyses in the FIS report dated October 15, 1981, were conducted by Tippetts-Abbett-McCarthy-Stratton under subcontract to NJDEP, Division of Water Resources for FEMA, under Inter-Agency Agreement M-3959. This work was completed in May 1978.
Deal, Borough of:	the hydrologic and hydraulic analyses in the revised FIS report dated August 6, 2002, were prepared by Leonard Jackson Associates, for FEMA, under Contract No. EMN-96-CO-0026. This work was completed in December, 2000. The wave height analysis in the same FIS report was prepared by Dewberry & Davis for FEMA under Contract No. EMW-C-0543. This work was completed in December 1982.
Eatontown, Borough of:	the hydrologic and hydraulic analyses in the FIS report dated March 16, 1981, were prepared by Tippetts-Abbett-McCarthy-Stratton under subcontract to NJDEP, Division of Water Resources for the FIA under Contract No. H-3959. This work was completed in January 1978.
Englishtown, Borough of:	the hydrologic and hydraulic analyses in the FIS report dated September 16, 1980, represent a revision of the original analysis. The analyses for this study were conducted by Justin and Courtney, Inc., under subcontract NJDEP for the FIA under Contract No.

2.

H-3959. This work was completed in December 1979.

- Fair Haven, Borough of: the hydrologic and hydraulic analyses for the FIS report dated April 1979 were conducted by Tippetts-Abbett-McCarthy-Stratton under subcontract to NJDEP, Division of Water Resources, Bureau of Flood Plain Management, for the FIA under Contract No. H-3959. This work was completed in November 1977.
- Freehold, Township of: the hydrologic and hydraulic analyses for the FIS report dated October 4, 1982, were performed by T & M Associates under subcontract to NJDEP for FEMA, under Contract No. H-4759. This work was completed in August 1980.
- Hazlet, Township of: the hydrologic and hydraulic analyses in the FIS report dated June 1, 1982, represent a revision of the original analyses completed in September 1977 by Tetra Tech, Inc., for FEMA under Contract No. H-3830. This updated version was prepared by Dewberry & Davis under agreement with FEMA, and was completed in October 1981.
- Highlands, Borough of: the hydrologic and hydraulic analyses in the revised FIS report dated December 22, 1998, were prepared by the U.S. Army Corps of Engineers (USACE), Philadelphia District, for FEMA under Inter-Agency Agreement No. EMW-94-E-4432, Project Order Nos. 1 and 1A. This work was completed in April 1996.
- Holmdel, Township of: the hydrologic and hydraulic analyses in the FIS report dated September 1, 1981, were prepared by Tippetts-Abbett-McCarthy-Stratton for FEMA under Contract No. H-3959. This work was completed in May 1978.
- Howell, Township of: the hydrologic and hydraulic analyses in the FIS report dated July 6, 1982, were prepared by T & M Associates under subcontract to NJDEP for FEMA, under Contract No.. A14516. This work was completed in August 1980.
- Keansburg, Borough of: the hydrologic and hydraulic analyses in the FIS report dated November 16, 1982, were prepared by Tetra Tech, Inc., for FEMA under Contract No. H-3830. This work was completed in August 1981.

Keyport, Borough of:	the hydrologic and hydraulic analyses in the FIS report dated October 18, 1982, represents a revision of the original analyses by Tetra Tech, Inc., for FEMA under Contract No. H-3830. The updated version was also prepared by Tetra Tech, Inc., under agreement with FEMA. This work was completed in August 1981.
Little Silver, Borough of:	the wave height analysis in the FIS report dated June 15, 1982, was prepared by Dewberry & Davis for FEMA.
Loch Arbour, Village of:	the hydrologic and hydraulic analyses in the FIS report dated March 15, 1983, represent a revision of the original analyses by Tetra Tech, Inc., for FEMA under Contract No. H-3830. The updated version was also prepared by Tetra Tech, Inc., under agreement with FEMA. This work was completed in August 1981.
Long Branch, City of:	the wave height analysis in the FIS report dated July 5, 1983, was prepared by Dewberry & Davis for FEMA, under Contract No. EMW-C-0543. This work was completed in December 1982.
Manalapan, Township of:	the hydrologic and hydraulic analyses in the FIS report dated September 15, 1977 were performed by Anderson-Nichols & Co., Inc., for the FIA under Contract No. H-3715. The work was completed in May 1976.
Manasquan, Borough of:	the wave height analysis in the FIS report dated June 15, 1983, was prepared by Dewberry & Davis for FEMA under Contract No. EMW-C-0543. This work was completed in December 1982.
Marlboro, Township of:	the hydrologic and hydraulic analyses in the FIS report revised April 1982 was performed by Anderson-Nichols & Co., Inc., for the FIA under Contract No. H-3715. This work was completed in May 1976.
Matawan, Borough of:	the hydrologic and hydraulic analyses in the FIS report dated March 30, 1981, was conducted by T & M Associates under subcontract to NJDEP for the FIA, under Contract No A14516. This work was completed in November 1979.

Middletown, Township of:	the hydrologic and hydraulic analyses in the FIS report dated August 15, 1983, represent a revision of the original analyses performed by Tetra Tech, Inc., for FEMA under Contract No. H-3830. The updated version was prepared by Dewberry & Davis under agreement with FEMA. The wave height analysis was prepared by Tetra Tech, Inc., for FEMA under Contract No. H-3830. This work was completed in August 1981.
Millstone, Township of:	the hydrologic and hydraulic analyses in the FIS report dated July 20, 1981, was conducted by Anderson-Nichols & Co., Inc., under subcontract to NJDEP for FEMA under Contract No. H-4546. This work was completed in February 1979.
Monmouth Beach, Borough of:	the wave height analysis in the FIS report dated October 16, 1984, was prepared by Dewberry & Davis for FEMA under Contract No. EMW-C-0543. This work was completed in January 1982.
Neptune, Township of:	the wave height analysis in the FIS report dated September 1, 1983, was prepared by Dewberry & Davis for FEMA under Contract No. EMW-C-0543. This work was completed in February 1983.
Ocean, Township of:	the hydrologic and hydraulic analyses in the FIS report revised July 2, 2003, represent a revision of the original analyses performed by Edward Schnitzer, Consulting Engineers for USACE for the FIA under Inter-Agency Agreement Nos. IAA-H-2-73 and IAA-H-19-74, Project Order Nos. 14 and 15, respectively. That work was completed in August 1975. The revised analyses were prepared by Leonard Jackson Associates for FEMA under Contract No. EMN-96-CO-0026. This work was completed in December 2000.
Oceanport, Borough of:	the hydrologic and hydraulic analyses in the FIS report dated August 1976 was conducted by Tippetts-Abbett-McCarthy-Stratton for the FIA under Contract No. H-3733.
Red Bank, Borough of:	the hydrologic and hydraulic analyses in the FIS report dated November 19, 1980, were prepared by Tippetts-Abbett-McCarthy-Stratton under subcontract to NJDEP, Division of Water Resources, Bureau of Flood Plain Management

	under Contract No. H-3959. This work was completed in November 1977.
Rumson, Borough of	the wave height analysis in FIS report dated June 15, 1982, was prepared by Dewberry & Davis for FEMA.
Sea Bright, Borough of:	the wave height analysis in the FIS report dated May 16, 1983, was prepared by Dewberry & Davis for FEMA under Contract No. EMW-C-0543. This work was completed in November 1982.
Sea Girt, Borough of:	the wave height analysis in the FIS report dated July 5, 1983, was prepared by Dewberry & Davis for FEMA under Contract No. EMW-C-0543. This work was completed in December 1982.
Shrewsbury, Borough of:	the hydrologic and hydraulic analyses in the FIS report dated February 1979 was performed by NJDEP for the FIA under Contract No. H-3959. This work was completed in March 1978.
Spring Lake, Borough of:	the wave height analysis in the FIS report dated September 1, 1983, was prepared by Dewberry & Davis for FEMA under Contract No. EMW-C-0543. This work was completed in December 1982.
Spring Lake Heights, Borough of:	the hydrologic and hydraulic analyses in the FIS report dated June 15, 1981, was prepared by T & M Associates under subcontract to NJDEP for FEMA under Contract No. H-4546. This work was completed in November 1979.
Tinton Falls, Borough of:	the hydrologic and hydraulic analyses in the FIS report dated October 15, 1981, was conducted by Tippetts-Abbett-McCarthy-Stratton under subcontract to NJDEP, Division of Water Resources under Inter-Agency Agreement No. H- 3959. The hydrologic and hydraulic analyses for the Swimming River were conducted By Dewberry, Nealon & Davis as the Technical Evaluation Contractor (TEC). This work was completed in February 1978.
Union Beach, Borough of:	the hydrologic and hydraulic analyses in the FIS report dated September 2, 1982, represent a revision of the original analyses performed by Tetra Tech, Inc., for FEMA under Contract No. H-3830. The

	updated version was prepared by Tetra Tech, Inc., under agreement with FEMA. This work was completed in August 1981.					
Wall, Township of:	the hydrologic and hydraulic analyses in the report dated August 1976 were conducted Tippetts-Abbett-McCarthy-Stratton for the I under Contract No. H-3733.					
West Long Branch,						
Borough of:	the hydrologic and hydraulic analyses in the FIS report dated July 16, 1980, were conducted by Tippetts-Abbett-McCarthy-Stratton under subcontract to NJDEP, Division of Water Resources under Contract No. H-3959. This work was completed in January 1978.					

The authority and acknowledgements for the Boroughs of Farmingdale, Interlaken, Lake Como, Neptune City, Roosevelt and the Township of Upper Freehold are not available because no FIS reports were published for those communities

For this countywide FIS, revised hydrologic and hydraulic analyses for Manalapan Brook from the confluence with South River at the county line (Township of Manalapan and Middlesex County) to a location approximately 10 miles upstream at Moonlight Court in the Township of Millstone, were prepared for FEMA by Medina Consultants, P.C. under Contract No. EMN-2003-CO-0005. This work was completed in September 2007.

The remaining flooding sources studied in detail have been redelineated using updated topographic data provided to FEMA by Monmouth County.

Base map information shown on this FIRM was provided in digital format by the State of New Jersey Office of Information Technology. This information was derived from color infrared (CIR) orthophotos produced at a scale of 1:2400 (1"=200') with a 1 foot pixel resolution from photography captured during February-April, 2002. The projection used for the production of this FIRM is New Jersey State Plane, FIPSZONE 2900. The horizontal datum was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection, or State Plane zones used in the production of FIRMs for adjacent counties may result in slight positional differences in map features at the county boundaries. These differences do not affect the accuracy of information shown on the FIRM.

1.3 Coordination

Consultation Coordination Officer's (CCO) meetings may be held for each jurisdiction in this countywide FIS. An initial CCO meeting is held typically with representatives of FEMA, the community, and the study contractor to explain the nature and purpose of a FIS and to identify the streams to be studied by detailed

methods. A final CCO meeting is held typically with representatives of FEMA, the community, and the study contractor to review the results of the study.

The dates of the initial and final CCO meetings held for Monmouth County and the incorporated communities within its boundaries are shown in Table 1, "Initial and Final CCO Meetings."

TABLE 1 – INITIAL AND FINAL CCO MEETINGS

Community	Initial CCO Date	Final CCO Date
Aberdeen, Township of	June 15, 1979	February 29, 1984
Allenhurst, Borough of	*	January 23, 1978
Allentown, Borough of	February, 1978	September 29, 1980
Asbury Park, City of	*	October 28, 1982
Atlantic Highlands, Borough of	*	August 2, 1983
Avon-by-the-Sea, Borough of	*	January 27, 1982
Belmar, Borough of	*	January 21, 1983
Bradley Beach, Borough of	*	February 8, 1982
Brielle, Borough of	*	September 22, 1982
Colts Neck, Township of	May 18, 1976	December 10, 1980
Deal, Borough of	*	January 4, 1983
-	*	July 20, 2001
Eatontown, Borough of	May 18, 1976	April 29, 1980
Englishtown, Borough of	March 15, 1976	April 29, 1980
Fair Haven, Borough of	May 18, 1976	November 29, 1978
Freehold, Township of	June 6, 1977	May 20, 1982
Hazlet, Township of	August 26, 1976	January 7, 1982
Highlands, Borough of	August 1, 1996	April 28, 1997
Holmdel, Township of	May 18, 1976	February 26, 1981
Howell, Township of	June 3, 1977	February 2, 1982
Keansburg, Borough of	*	June 30, 1982
Keyport, Borough of	*	April 13, 1982
Little Silver, Borough of	*	October 26, 1981
Loch Arbour, Village of	*	October 28, 1982
Long Branch, City of	*	February 2, 1983
Manalapan, Township of	December 16, 1974	July 20, 1976
Manasquan, Borough of	*	January 21, 1983
Marlboro, Township of	December 17, 1974	September 15, 1976
Matawan, Borough of	*	September 9, 1980
Middletown, Township of	August 26, 1976	April 30, 1982
Millstone, Township of	June 1977	November 25, 1980
Monmouth Beach, Borough of	*	October 26, 1981
Neptune, Township of	*	April 13, 1983
Ocean, Township of	October 2, 1973	January 15, 1976
	*	October 29, 2001

TABLE 1 - INITIAL AND FINAL CCO MEETINGS - continued

Community	Initial CCO Date	Final CCO Date
Oceanport, Borough of	*	October 29, 1975
Red Bank, Borough of	May 18, 1976	April 4, 1980
Rumson, Borough of	*	October 27, 1981
Sea Bright, Borough of	*	January 10, 1983
Sea Girt, Borough of	*	January 21, 1983
Shrewsbury, Borough of	May 18, 1976	August 14, 1978
Spring Lake, Borough of	*	January 24, 1983
Spring Lake Heights,	July 14, 1978	December 2, 1980
Borough of	*	*
Tinton Falls, Borough of	May 18, 1976	January 22, 1981
Union Beach, Borough of	*	April 22, 1982
Wall, Township of	May 7, 1975	March 4, 1976
West Long Branch, Borough of	May 18, 1976	January 23, 1980

*Data not available

The initial scoping meetings were held on October 18, 20, and 25, 2005.

The final CCO meeting was held on March 17-19, 2008. Representatives of FEMA, the County of Monmouth, New Jersey Department of Environmental Protection, Dewberry & Davis, and various communities in Monmouth County were present.

2.0 AREA STUDIED

2.1 Scope of Study

This FIS covers the geographic area of Monmouth County, New Jersey.

All or portions of the flooding sources listed in Table 2, "Flooding Sources Studied by Detailed Methods," were studied by detailed methods. Limits of detailed study are indicated on the Flood Profiles (Exhibit 1) and on the FIRM (Exhibit 2).

TABLE 2 - FLOODING SOURCES STUDIED BY DETAILED METHODS

Applegates Creek Ardena Brook Atlantic Ocean Big Brook (Upstream Reach) Bannen Meadow Brook Barclay Brook Barren Neck Creek Betty Brook Big Brook (Downstream Reach) Big Brook Tributary H Burkes Creek Claypit Creek Comptons Creek Cranberry Brook Deal Lake Deal Tributary 1

TABLE 2 - FLOODING SOURCES STUDIED BY DETAILED METHODS - continued

Deal Tributary 2 Deal Tributary 3 Deal Tributary 3A Deal Tributary 4 Deal Tributary 4A **Debois Creek** Debois Creek Tributary Deep Run Deep Run Tributary A Deep Run Tributary B Deep Run Tributary C **Doctors** Creek East Creek Flat Creek Fletcher Lake Gander Brook Gravelly Brook Gravelly Run Groundhog Brook Hannabrand Brook Haystack Brook Heroys Pond Creek Hockhockson Brook Hog Swamp Brook Hollow Brook Indian Run Judas Creek (Downstream Reach) Judas Creek (Upstream Reach) Jumping Brook 1 Jumping Brook 2 Little Silver Creek Little Silver Creek Tributary 1 Little Silver Creek Tributary 2 Little Silver Creek Tributary 2A Little Silver Creek Tributary 2B Little Silver Creek Tributary A Long Brook Mac's Brook Mahoras Brook Manalapan Brook Manalapan Brook Tributary A Manalapan Brook Tributary B Manasquan River Manasquan River Tributary A Marl Brook Matawan Creek Matchaponix Brook

McClees Creek McGellairds Brook Metedeconk River North Branch Milford Brook Millstone River Mine Brook Miry Bog Brook Mohingson Brook Monascunk Creek Musquash Brook Navesink River Nut Swamp Brook Parkers Creek Parkers Creek North Branch Perrineville Lake Pine Brook 1 Pine Brook 2 Pine Brook Tributary C Poly Pond Brook Polypod Brook Poplar Brook Poplar Brook Tributary 1 Poplar Brook Tributary 2 Poplar Brook Tributary 3 Poricy Brook Ramanessin Brook **Raritan Bay** Roberts Swamp Brook (Downstream Reach) Roberts Swamp Brook (Upstream Reach) Rocky Brook (Downstream Reach) Rocky Brook (Upstream Reach) Sandy Hook Bay Shark River Shark River Tributary D Shark River Tributary E Shrewsbury River South Shrewsbury River Still House Brook Swimming River Sylvan Lake **Tepehemus Brook** Tepehemus Brook, South Branch **Toms River** Town Brook Town Neck Creek Turtle Mill Brook

TABLE 2 - FLOODING SOURCES STUDIED BY DETAILED METHODS - continued

Waackaack Creek Wampum Brook Watson Creek Weamaconk Creek Weamaconk Creek Tributary Wells Brook Wemrock Brook Whale Creek Whale Pond Brook Whale Pond Brook Tributary 1 Whale Pond Brook Tributary 2 Willow Brook Willow Brook Tributary F Willow Brook Tributary G Willow Brook East Branch Wreck Pond Brook Wreck Pond Brook, East Branch Yellow Brook Yellow Brook 2 Yellow Brook 2 Tributary Yellow Brook Tributary K Yellow Brook Tributary L

New Name

Table 3, "Stream Name Changes," lists streams that have names in this county wide FIS other than those used in previously printed FISs for the communities in which they are located.

TABLE 3 – STREAM NAME CHANGES

Community

Township of Wall

Township of Wall

Heights

Township of Wall

Borough of Brielle

Township of Wall

Township of Freehold

Borough of Manasquan

Old Name

East Branch Willow Brook Township of Holmdel East Branch Wreck Pond Brook Township of Aberdeen Gravelly Run Gravelly Run Borough of Matawan Judas Creek Township of Middletown Jumping Brook Township of Neptune Jumping Brook **Borough of Tinton Falls** Jumping Brook Township of Howell North Branch Metedeconk River Borough of Shrewsbury North Branch Parkers Creek Township of Colts Neck Pine Brook Township of Manalapan Pine Brook Township of Marlboro Pine Brook Borough of Tinton Falls Pine Brook Borough of Spring Lake Polly Pod Brook

Polly Pod Brook South Branch Tepehemus Brook **Roberts Swamp Brook**

Roberts Swamp Brook

Roberts Swamp Brook

Township of Manalapan South Branch Tepehemus Brook

Wreck Pond Brook East Branch Gravelly Brook Gravelly Brook Judas Creek (Upstream Reach) Jumping Brook 1 Jumping Brook 2 Jumping Brook 2 Metedeconk River North Branch Parkers Creek North Branch Pine Brook 1 Pine Brook 2 Pine Brook 2 Pine Brook 1

Willow Brook East Branch

Poly Pond Brook **Poly Pond Brook Tepehemus Brook South Branch** Roberts Swamp Brook (Downstream Reach) **Roberts Swamp Brook** (Downstream Reach) **Roberts Swamp Brook** (Upstream Reach) **Tepehemus Brook South Branch**

TABLE 3 - STREAM NAME CHANGES - continued

Community

Old Name

Township of Marlboro Township of Manalapan Township of Marlboro Township of Freehold Township of Manalapan Township of Marlboro Township of Freehold Township of Manalapan Township of Marlboro Township of Freehold Township of Wall Township of Wall Township of Marlboro Township of Freehold Borough of Englishtown Township of Colts Neck Township of Freehold Borough of Manasquan Township of Freehold

South Branch Tepehemus Brook Tributary A Tributary A Tributary A to Manasquan River Tributary B Tributary B Tributary B to Manasquan River Tributary C Tributary C Tributary C to Manasquan River Tributary D Tributary E Tributary F Tributary G Tributary H Tributary K Tributary L Tributary to Debois Creek Tributary to Weamaconk Creek Tributary to Yellow Brook Tributary to Yellow Brook Watson Creek Yellow Brook

New Name

Tepehemus Brook South Branch Manalapan Brook Tributary A Deep Run Tributary A Manasquan River Tributary A Manalapan Brook Tributary B Deep Run Tributary B Manasquan River Tributary B Pine Brook 2 Tributary C Deep Run Tributary C Manasquan River Tributary C Shark River Tributary D Shark River Tributary E Willow Brook Tributary F Willow Brook Tributary G **Big Brook Tributary H** Yellow Brook Tributary K Yellow Brook Tributary L **Debois Creek Tributary** Weamaconk Creek Tributary Miry Bog Brook Yellow Brook 2 Tributary Mac's Brook Yellow Brook 2

For this countywide FIS, Manalapan Brook has been restudied using detailed methods. The revised hydrologic analysis includes the entire basin area of Manalapan Brook (drainage area 17.53 square miles). The revised hydraulic analysis extends from its confluence with the South River at the border of Monmouth and Middlesex Counties in the Township of Manalapan to Moonlight Court in the Township of Millstone.

The areas studied by detailed methods were selected with priority given to all known flood hazard areas and areas of projected development and proposed construction.

Numerous flooding sources in the country were studied by approximate methods. Approximate analyses were used to study those areas having a low development potential or minimal flood hazards. The scope and methods of study were proposed to, and agreed upon by, FEMA and Monmouth County.

This FIS also incorporates the determinations of letters issued by FEMA resulting in map changes (Letter of Map Revision [LOMR], Letter of Map Revision - based

on Fill [LOMR-F], and Letter of Map Amendment [LOMA], as shown in Table 4, "Letters of Map Correction."

TABLE 4 – LETTERS OF MAP CORRECTION

Community	Flooding Source(s) Project Identifier	Date Issued	Type
Aberdeen, Township of	Raritan Bay / Removal of VE Zone designation	June 11, 1987	LOMR
Aberdeen, Township of	Mohingson Brook / Updated hydrologic analysis	April 17, 1995	LOMR
Colts Neck, Township of	Correction of corporate limits discrepancy	October 7, 1997	LOMR
Freehold, Township of	Correction of corporate limits discrepancy	October 7, 1997	LOMR
Hazlet, Township of	Flat Creek / Correction of street locations	April 12, 1994	LOMR
Manalapan, Township of	Pine Brook / Revised to include updated hydrologic and hydraulic info	June 11, 1987	LOMR
Manalapan, Township of	Still House Brook / Revised to include more detailed topographic data	November 1, 1999	LOMR
Marlboro, Township of	Big Brook Tributaries I and J / Revised to include updated hydrologic info	October 10, 1995	LOMR
Monmouth Beach, Borough of	Atlantic Ocean and Shrewsbury River / Revision of BFE, Designation from VE to AE Zones	May 12, 2005	LOMR
Neptune, Township of	Atlantic Ocean / Revision of Zones based on more detailed topographic data	January 14, 1991	LOMR
Neptune, Township of	Atlantic Ocean/ Revised to include updated hydrologic info	November 28, 2007	LOMR
Sea Bright, Borough of	Atlantic Ocean / Revision of Zones based on more detailed topographic data	January 14, 1991	LOMR

2.2 Community Description

Monmouth County is located in the central part of New Jersey, extending west to east across nearly the entire state, and is the northernmost county along the area known as the Jersey Shore. Monmouth County is bordered by Middlesex County to the north, Ocean County to the south, Burlington County to the southwest, Mercer County to the west and the Atlantic Ocean to the east. Monmouth County also borders the New York City Borough of Staten Island, on the other side of the Raritan Bay. Monmouth County spans 665 square miles and according to the 2000 census, the population in 2000 was 615,301. The County seat is the Borough of Freehold. Several major highways span Monmouth County, including the Garden State Parkway, New Jersey Turnpike, Interstate 195, and State Roads 9, 18, 34, 35, 36 and 70. Monmouth County is also home to the United States Naval Reservation, Naval Weapons Station Earle. Several rail lines and bus lines also pass through the County, including the New Jersey Transit North Jersey Coast Line. The eastern part of Monmouth County is a significant portion of the Jersey Shore, a very popular tourist destination, particularly in summer months. The western part of Monmouth County is far more residential and not as densely populated. The lowest points in Monmouth County occur at the Atlantic Ocean, while the highest point is atop Crawford Hill in the Township of Holmdel, which lies 391 feet above sea level.

Monmouth County has a temperate climate with warm summers and moderate winters. The average annual temperature is approximately 53 degrees Fahrenheit (°F), with January being the coldest month, averaging 31.3°F and July the warmest month averaging 74.5°F. The average annual precipitation is approximately 45 inches (U.S. Department of Commerce, 1961).

2.3 Principal Flood Problems

Flooding in Monmouth County is attributed mainly to tropical storms, extratropical cyclones (also known as northeasters) and to a lesser extent, severe thunderstorms. Near the Atlantic Ocean, Raritan Bay, Navesink River, Sandy Hook Bay, Shark River and Shrewsbury River, serious flooding problems are the result of high tidal surge and associated wave activity caused primarily by tropical storms, especially hurricanes. Usually occurring during late summer and early autumn, these storms can result in severe damage to coastal areas. Although extratropical cyclones can develop at almost any time of the year, they are more likely to occur during winter and spring. Thunderstorms are a common occurrence during the warm summer months.

Other low-lying areas throughout Monmouth County are vulnerable to severe flooding and flood-related damage, due to the periodic flooding caused by the overflow of streams and lakes. Heavy rainfall can result in higher than normal stages of Deal Lake, affecting the Borough of Allenhurst, the City of Asbury Park, the Borough of Deal and the Village of Loch Arbour, which frequently experiences property damage. Additional flooding in the Township of Aberdeen is attributed to tidal inundation and backwater from inadequate culverts. Due to high tidal stages on the Raritan Bay, the northern area of Aberdeen in the tidal plains of Matawan Creek, Mohingson Brook and Whale Creek is prone to flooding that affects Route 35 and properties near the shoreline. Areas adjacent to Mohingson Brook, Gravelly Run and Matawan Creek are prone to flooding due to inadequate culverts.

In the Borough of Deal, the lower portion of Poplar Brook is within the tidal range of the Atlantic Ocean. Runoff from severe rain periodically can cause the upper reach of Poplar Brook to overflow its banks. Residential properties will be affected by flooding on both stretches of Poplar Brook.

In the Borough of Eatontown, at times blockage by debris and refuse on Wampum Brook, Parkers Creek, Whale Pond Brook, Husky Brook, Crystal Book and Turtle Mill Brook can cause severe restrictions of culverts and contribute to local flooding. Most local flooding occurs upstream of State Route 35 on Parkers Creek, upstream of State Route 35 near Clinton Avenue, upstream of State Route 71 on Husky Brook at the twin 48-inch culverts under the Duncan Thecker Associates Service Road, and along the Lewis Street Bridge over Wampum Brook.

In the Township of Freehold, flooding has occurred along Manasquan River Tributary B upstream of Elton Adelphia Road, to a distance of 100 feet beyond normal channel bank. During severe conditions, Coventry Drive, which parallels the stream, has become impassable due to flooding. Debois Creek causes localized flooding where roadways cross the stream. The Strickland Road crossing has been flooded to a depth of two feet above the road surface during severe storms. The adjacent floodplain has been inundated, but with no extensive property damage. Debois Creek Tributary has experienced flooding during storm conditions due to constricted channel areas in the downstream portions of the stream. Extensive erosion in the channel of the tributary has been reported.

In the Township of Holmdel, flooding occurs upstream of State Route 34 and along South Street by Willow Brook, as well as near Middle Road by Waackaack Creek.

In the Township of Howell, localized flooding problems have occurred in the area of Long Brook and Bannen Meadow Brook. Long Brook has caused flooding of adjacent property near Wyckoff Road and the State Route 33 crossing. Howell Road is prone to flooding during severe conditions. Bannen Meadow Brook has caused flooding of adjacent property near Fort Plains Road and Casino Drive. The Fort Plains Road crossing is also flooded during severe flooding conditions.

In the Township of Manalapan considerable flooding occurs along Matchaponix Brook in the area of the corporate limits and at its junction with Pine Brook 2. Flood elevations along the lower reach of Pine Brook 2 are affected by backwater from the main branch of Matchaponix Brook. Flooding occurs along Pension Road near Clarks Mills. The housing development along Birmingham Drive, Terrytown Road and Winthrop Drive is subject to flooding from Pine Brook 2. The area along Pine Brook Road and Pease Road is flooded regularly when Pine Brook 2 Tributary C overflows its banks. Flooding problems also exist along Milford Brook in the area of Commack Lane, Pease Road and Tennant Road. Additional problems along Milford Brook arise during heavy rains in the area of Lafayette Mills and Lafayette Mills Road.

In the Borough of Matawan, flood gates are maintained by the community on Matawan Creek at the Lake Lefferts Dam. At times when the flood gates were not opened quickly enough during severe storm conditions, Ravine Drive was flooded to a depth of eight inches. Gravelly Brook has flooded Mill Road to a depth of six inches. The Municipal Garage, located on the floodplain of Gravelly Brook upstream of Church Street, has been flooded to a depth of eight inches, and the Church Street crossing has been flooded by Gravelly Brook to a depth of four inches. Downstream of the confluence of Gravelly Brook with Matawan Creek, the triple culvert at the Railroad Bridge causes backwater flooding of Aberdeen Road to a depth of five feet. In the Township of Marlboro, considerable flooding occurs along Deep Run in the area of the corporate limits and Old Texas Road, a relatively flat region. A wide floodplain also occurs at Deep Run's junction with Deep Run Tributary B. Additionally, backwater effects of the culvert on Milford Brook at State Route 18 cause flooding upstream of that structure.

In the Township of Middletown, the bayshore portion of the township lies in a poorly drained floodplain with abundant swamp and marshland. The low banks of the stream and the low relief of the surrounding terrain render this region extremely vulnerable to flooding. During periods of heavy precipitation, the creeks overtop their banks and spread their floodwaters over the broad floodplain.

In the Township of Ocean, inland flow of the ocean tidal surges in restricted by weirs in the streams flowing to the ocean, as well as by lake storage. Flooding in the township is caused mostly by local rainstorms.

In the Borough of Spring Lake Heights, flooding occurs along Wreck Pond Brook, Wreck Pond North Branch and Poly Pond Brook. In general, localized flooding may occur under severe storm conditions due to poor surface drainage.

In the Borough of Tinton Falls, low-lying areas are subject to periodic flooding caused by the overflow of Swimming River, Pine Brook 1 and Jumping Brook 2. The most severe flooding occurs at the junction of Pine Brook 1 and Swimming River.

The Borough of Union Beach lies in a poorly drained floodplain with abundant swamps and marshland. The flat gradient of the streams and low relief of the surrounding terrain makes the area extremely vulnerable to flooding. During periods of heavy rainfall, streams within the Borough can overtop and spread floodwaters across the broad floodplain.

In the Township of Wall, flooding in the eastern section and remaining parts of the Township is caused by streams overflowing their banks. The non-tidal sections of Shark River, Manasquan River and Wreck Pond flow in wide, meandering channels. Urbanization in the areas of Watson Creek, Judas Creek (Upstream Reach), Roberts Swamp Brook (Upstream Reach), Poly Pond Brook and Heroys Pond Brook increase the runoff to these streams. Flooding can be aggravated by the accumulation of debris at culverts and bridges.

Several severe storms have struck Monmouth County in the past. The most severe of these storms are described below.

On September 14-15 of 1944, the entire coast of New Jersey was struck by hurricane-force winds. Wind velocity ranged from 90 miles per hour at Atlantic City to over 100 miles per hour at New York City. The storm produced a maximum tidal elevation of 7.4 feet recorded at a gage in Sandy Hook, located in the Township of Middletown (USACE, 1960; USACE, 1972). On November 25, 1950, a nor'easter brought gale-force winds and more than three inches of rainfall to the entire coastline of Monmouth County. A wind velocity of 70 miles per hour was recorded in the City of Long Branch. The gage at Sandy Hook recorded a maximum tidal elevation of 7.2 feet (USACE, 1960; USACE, 1972).

On November 6-7 of 1953, a strong storm passed through Monmouth County. The City of Long Branch recorded a wind velocity of 78 miles per hour. The gage at Sandy Hook recorded a maximum tidal elevation of 7.9 feet.

On September 12, 1960, Hurricane Donna struck the coast of Monmouth County with wind gusts to nearly 70 miles per hour. The concurrence of the hurricane tidal surge and mean high tide resulted in a maximum tidal elevation of 8.6 feet at the gage at Sandy Hook (U.S. Department of Commerce, 1971).

On March 6-8 of 1962, a strong storm passed through Monmouth County with sustained winds of 45 miles per hour and gusts to 70 miles per hour. The storm remained in the region for 60 hours. This usually long duration coincided with five successive spring high tides. The combination produced a maximum tidal elevation of 7.8 feet at the gage at Sandy Hook (USACE, 1960; USACE, 1972).

On August 26-28 of 1971, Tropical Storm Doria resulted in peak flows greater than any other recorded at 41 streams throughout New Jersey (State of New Jersey, 1972).

On August 9, 1976, Hurricane Belle struck the New Jersey coastline with winds of up to 100 miles per hour. In Asbury Park, 2.56 inches of rain fell in a 24-hour period. At Beach Haven, a tidal surge combined with high tide levels produced a tidal height six feet above normal stage (FEMA, 1985).

2.4 Flood Protection Measures

Development and use of land within floodplains and the floodway are regulated by the New Jersey Department of Environmental Protection, Division of Land Use Regulation. Additionally, several municipalities within Monmouth County have adopted stream cleanup programs, which clear debris near bridges and culverts to prevent backwater flooding during large storm events.

Several structural flood protection measures have been furnished throughout Monmouth County as well. Small dams are located on Conines Mill Pond and Indian Run in the Borough of Allentown, on Swimming River in the Township of Middletown, on Pine Brook near Tinton Avenue in the Borough of Tinton Falls, and scattered elsewhere throughout the County. Small weirs restrict the passage of tidal surges into inland areas on Whale Pond Brook and Poplar Brook in the Township of Ocean, and small erosion control structures have been placed along the streams in the Township of Holmdel. The Township of Wall has also placed small stone wave protection measures near roads and other critical infrastructure. A bulkhead was constructed along Marine Park in the Borough of Red Bank.

3.0 ENGINEERING METHODS

For the flooding sources studied in detail in the county, standard hydrologic and hydraulic study methods were used to determine the flood hazard data required for this FIS. Flood events of a magnitude which are expected to be equaled or exceeded once on the average during any 10-, 50-, 100-, or 500-year period (recurrence interval) have been selected as having special significance for floodplain management and for flood insurance rates. These events, commonly termed the 10-, 50-, 100-, and 500-year floods, have a 10-, 2-, 1-, and 0.2-percent chance, respectively, of being equaled or exceeded during any year. Although the recurrence interval represents the long term average period between floods of a specific magnitude, rare floods could occur at short intervals or even within the same year. The risk of experiencing a rare flood increases when periods greater than 1 year are considered. For example, the risk of having a flood which equals or exceeds the 100-year flood (1-percent chance of annual exceedence) in any 50-year period is approximately 40 percent (4 in 10), and, for any 90-year period, the risk increases to approximately 60 percent (6 in 10). The analyses reported herein reflect flooding potentials based on conditions existing in the county at the time of completion of this FIS. Maps and flood elevations will be amended periodically to reflect future changes.

3.1 Riverine Hydrologic Analyses

Hydrologic analyses were carried out to establish the peak discharge-frequency relationships for the flooding sources studied in detail affecting the county.

Precountywide Analyses

Each incorporated community within, and the unincorporated areas of, Monmouth County, with the exceptions of the Boroughs of Farmingdale, Interlaken, Lake Como, Neptune City and Roosevelt, as well as the Township of Upper Freehold, has a previously printed FIS report. The hydrologic and hydraulic analyses described in those reports have been compiled and are summarized below.

For the Township of Wall, total Tide-Frequency Curves for the Atlantic Ocean, Shark River and Manasquan River were developed by the USACE (U.S. Department of Housing and Urban Development, 1973). In the Boroughs of Oceanport and Shrewsbury, peak storm-tide levels on the Shrewsbury River, South Shrewsbury River and its tributaries, as well as Parkers Creek were previously estimated by the USACE (U.S. Department of Housing and Urban Development: April, 1973; June, 1973; USACE, 1972). These values were adjusted to reflect tide levels in the South Shrewsbury River. Additionally, in the Borough of Highlands, stillwater elevations for Sandy Hook Bay were obtained from a stage-frequency stillwater level graph in a USACE report. For inland areas surrounding Deal Lake, Fletcher Lake and Sylvan Lake, temporary ponding was found to result from heavy rainfall. A hydrologic budget was used to estimate this ponding, and rainfall information for the calculations was obtained from the U.S. Weather Bureau (U.S. Department of Commerce, 1963).

For streams studies by detailed methods in Monmouth County, several methods were used for hydrologic analyses. Special Report 38, developed by the NJDEP in cooperation with the USGS, uses a series of mathematical and graphical relationships to estimate discharge frequency data (U.S. Department of the Interior, 1974). Various parameters such as drainage area, main channel slope, surface storage area and an index of manmade impervious cover based on basin population and development conditions are used in this type of analysis.

A log-Pearson Type III analysis is a statistical technique for fitting frequency distribution data to a curve for the purpose of predicting design floods at a specific site (Water Resources Council, 1976). Probabilities of floods of various sizes can be extracted from this curve. This allows development of a drainage discharge ratio between a known discharge at a known point (gaging station) and the discharge at the area in question. The following equation was used at several streams in Monmouth County to determine this relationship:

$$Q_1 / Q_2 = (A_1 / A_2)^{-1}$$

Where Q_1 and A_1 are the known discharge from a gaging station and the associated drainage area; Q_2 and A_2 are the discharge to be calculated and the associated drainage area, and T is the transfer exponent. This method is outlined by the Water Resources Council in Bulletins 15, 17, 17A and 17B (Water Resource Council, 1977; 1976; 1967).

The last common hydrologic analysis method used in this study is the Rational Method, used for streams with a drainage area less than approximately one square mile. The equation for the Rational Method is:

Q = CIA

Where Q is the discharge to be calculated, C is the runoff coefficient (dependent on land use), I is the rainfall intensity for the design storm and A is the drainage area.

Peak discharges for Big Brook (Downstream Reach) in the Townships of Colts Neck and Big Brook (Upstream Reach) in the Townships of Marlboro were determined using Special Report 38.

Gravelly Brook, in the Township of Aberdeen was studied using a log-Pearson Type III analysis. In the Township of Howell, it was studied by the Rational Method. In the Borough of Matawan and Township of Marlboro, peak discharges for Gravelly Brook were determined using Special Report 38.

In the Township of Middletown, Jumping Brook 1 was studied using Special Report 38, and the Borough of Tinton Falls and Township of Wall used drainage area disposition to determine peak flows, then verified the results using Special Report 38.

Peak discharges for Matawan Creek in the Township of Aberdeen were determined using a log-Pearson Type III analysis, and were determined using Special Report 38 in the Township of Marlboro and Borough of Matawan.

In the Borough of Englishtown and Townships of Freehold and Manalapan, peak discharges for McGellairds Brook were determined using Special Report 38.

In the Townships of Manalapan and Marlboro, Milford Brook was studied using Special Report 38.

In the Boroughs of Eatontown, Shrewsbury and Tinton Falls, peak discharges for Parkers Creek were determined using Special Report 38.

In the Township of Colts Neck and the Borough of Tinton Falls, peak discharges for Pine Brook 1 were determined using Special Report 38.

In the Townships of Manalapan and Marlboro, peak discharges for Pine Brook 2 were calculated using Special Report 38.

In the Township of Howell, peak flows for Polypod Brook were determined using the Rational Method.

In the Township of Wall, peak discharges for Poly Pond Brook were determined during an overall basin study using drainage area disposition.

In the Borough of Deal and Township of Ocean, peak discharges for Poplar Brook were determined using a log-Pearson Type III analysis, using gage information obtained from Matawan Creek, and then verified using the Rational Method.

Peak discharges for the Shark River in the Borough of Tinton Falls and Township of Wall were determined using a log-Pearson Type III analysis, for which gage records were obtained for Manasquan River located in Squankum, New Jersey to determine a discharge-frequency relationship (U.S. Geological Survey, published annually).

In the Townships of Colts Neck, Middletown and Ocean, and the Borough of Tinton Falls, peak discharges for the Swimming River were determined using a log-Pearson Type III analysis.

Tepehemus Brook, in the Townships of Manalapan and Marlboro, was studied using Special Report 38.

In the Townships of Colts Neck and Freehold, peak discharges for Yellow Brook 2 Tributary were determined using Special Report 38. In the Townships of Hazlet and Middletown, as well as the Borough of Keansburg and Union Beach, peak discharges for Waackaack Creek were derived from a previous USACE study (USACE, 1968). However, in the Township of Holmdel, Special Report 38 was used to study this stream.

In the Townships of Freehold and Manalapan, as well as the Borough of Englishtown, peak discharges for Weamaconk Creek were determined by Special Report 38. Peak discharges for Wemrock Brook in the Townships of Freehold and Manalapan were determined from Special Report 38 as well.

In the Borough of Eatontown, peak flows for Whale Pond Brook were derived from a USACE study (U.S. Department of Housing and Urban Development, 1977). However, in the Township of Ocean, peak flows were calculated from an overall basin study using drainage area disposition.

In the Townships of Colts Neck, Holmdel and Marlboro, peak discharges for Willow Brook were determined using Special Report 38.

In the Townships of Colts Neck and Freehold, peak discharges for Yellow Brook were determined using Special Report 38.

In the Township of Aberdeen, peak discharges for Mohingson Brook and Whale Creek were determined using a gage analysis based on data obtained from gages on Matawan Creek.

In the Borough of Allentown, peak discharges for Doctors Creek were determined using a gage analysis. Flows for Indian Run were obtained using the Soil Conservation Service (SCS) Computer Program TR20 (U.S. Department of Agriculture, 1976).

In the Township of Colts Neck, peak discharges for Barren Neck Creek, Hockhockson Brook and Marl Brook were obtained using Special Report 38.

In the Township of Freehold, peak discharges for Applegates Creek, Burkes Creek, Debois Creek, Manasquan River Tributary A, Manasquan River Tributary B, Manasquan River Tributary C and Debois Creek Tributary were determined using Special Report 38. Peak flows for Manasquan River were determined using a log-Pearson Type III analysis.

In the Township of Hazlet, peak flows for East Creek, Flat Creek and Monascunk Creek were determined using Special Report 38.

In the Township of Holmdel, peak flows for Willow Brook, East Branch, Mahoras Brook and Ramanessin Brook were determined using Special Report 38.

In the Township of Howell, peak flows for Ardena Brook, Bannen Meadow Brook, Groundhog Brook, Haystack Brook and Long Brook were determined using Special Report 38. Peak flows for Manasquan River and Metedeconk River North Branch were determined using a log-Pearson Type III analysis, while Polypod Brook was studied using the Rational Method.

In the Township of Manalapan, peak discharges for Gander Brook, Matchaponix Brook, Still House Brook, Manalapan Brook Tributary A, Manalapan Brook Tributary B and Pine Brook 2 Tributary C were determined using Special Report 38.

In the Township of Marlboro, Barclay Brook, Deep Run, Deep Run Tributary A, Deep Run Tributary B, Deep Run Tributary C, Willow Brook Tributary F, Willow Brook Tributary G, Big Brook Tributary H, Yellow Brook Tributary K and Yellow Brook Tributary L were determined using Special Report 38.

In the Township of Middletown, peak discharges for Claypit Creek, Comptons Creek, Mahoras Creek, McClees Creek, Nut Swamp Brook, Poricy Brook and Town Brook were determined using Special Report 38.

In the Township of Millstone, peak discharges for Millstone River, Toms River and Rocky Brook (Upstream Reach) were determined using Special Report 38. Flows for Rocky Brook (Downstream Reach) were derived from the Flood Insurance Study for the Township of East Windsor, Middlesex County, New Jersey.

In the Township of Ocean, a basin study was conducted and a drainage area disposition was used to determine the peak discharges for Deal Tributary 1, Deal Tributary 2, Deal Tributary 3, Deal Tributary 3A, Deal Tributary 4, Deal Tributary 4A, Poplar Brook Tributary 1, Poplar Brook Tributary 2, Poplar Brook Tributary 3, Whale Pond Brook Tributary 1 and Whale Brook Tributary 2. Hog Swamp Brook was studied using the Rational Method, and Hollow Brook was studied using Special Report 38.

Peak flows for Turtle Mill Brook in the Borough of Oceanport were derived from a USACE study (USACE, 1969).

Peak flows for Parkers Creek North Branch in the Borough of Shrewsbury were determined using Special Report 38.

Peak flows for Wreck Pond Brook in the Borough of Spring Lake Heights were derived from the FIS for the Township of Wall (U.S. Department of Housing and Urban Development, 1976).

In the Township of Wall, a basin study was conducted and a drainage area disposition was used to determine the peak discharges for Wreck Pond Brook East Branch, Hannabrand Brook, Heroys Pond Creek, Judas Creek (Upstream Reach), Laurel Gully, Poly Pond Brook (Wall), Roberts Swamp Brook (Upstream Reach), Shark River Tributary D, Shark River Tributary E, Watson Creek and Wreck Pond Brook. Calculated flows were verified using Special Report 38.

In the Borough of Little Silver, streams were divided into two basic systems. The first included Little Silver Creek, Little Silver Tributary A and Little Silver

Tributary 1. The second included Little Silver Tributary 2, Little Silver Tributary 2A and Little Silver Tributary 2B. The watershed contributing to each system was defined and converted to a standard model using parameters that allow the selection of a similar gaged watershed, necessary because no gages exist on these streams. For gage data, Swimming River in the Borough of Red Bank was used, with records since 1923. Using a standard log-Pearson Type III analysis, peak discharge-frequency curves were developed for the two watersheds and applied uniformly.

In the Borough of Manasquan peak discharge-drainage area relationships were determined by high water marks for Mac's Brook, Roberts Swamp Brook (Downstream Reach) and Judas Creek (Downstream Reach).

Revised Analyses

Information on the methods used to determine peak discharge-frequency relationships for the stream restudied as part of this countywide FIS is shown below.

All discharges shown below for Manalapan Brook were calculated in accordance with procedures outlined in the publication by the USGS entitled "Nationwide Summary of U.S. Geological Survey Regional Regression Equations for Estimating Magnitude and Frequency of Floods for Ungaged Sites, 1993", also referred to as Water Resources Investigation (WRI) Report 94-4002 (U.S. Department of the Interior, 1982).

Flow locations were selected at various points along the reaches of this brook. Locations were first selected based on prior documented FEMA flow locations for prior studies of the drainage basin (FEMA, 1981; U.S. Department of Housing and Urban Development, 1977) and on USGS gage locations (U.S. Department of the Interior, retrieved 2006: USGS 01405303, 04105310, 01405330, 01405335, 01405400). Additional flow locations were added along the brook to provide a uniform drainage analysis of the study area.

Based on WRI Report 94-4002, the variables governing the peak stream flows for each of the flow locations are Drainage Area, Main Channel Slope, Population Density and Surface Storage Index. With the flow locations selected, the drainage area to each of the locations was delineated based on the Monmouth County GIS 2-foot contour topography (State of New Jersey, Provided 2006).

The Main Channel Slope was measured between points which are 10 percent and 85 percent of the main channel length upstream from the study site. This was also measured based on the Monmouth County GIS 2-foot contour topography. The Population Density was based on Census 2000 Data obtained form the New Jersey Department of Labor and Workforce Development (State of New Jersey, 2001). First the Population density was calculated for each overall community area. A weighted value was then calculated for each incremental drainage area based on estimated community coverage.

The Surface Storage Index is the percentage of the drainage area occupied by lakes and swamps. This was measured based on the New Jersey 2002 digital orthoimagery (New Jersey Image Warehouse, Retrieved 2006). There are two reservoirs, Millhurst Pond and Bulks Lake located along Manalapan Brook. Neither reservoir has significant surcharge capacity or serves as a flood control structure. Therefore, this study neglects any detention effects of these ponds. Their areas, however, are reflected in the Surface Storage Index.

There are four USGS gages located within Manalapan Brook's limit of detailed study. These gages contain no peak flow records; however they are utilized for drainage area checks. USGS 01405400 is located in Middlesex County downstream of the limit of detailed study. This gage contains 49 years of record but does not satisfy the allowable drainage area weighting limit of 50 percent. As such, this gage was not utilized in this study.

A regression analysis was performed at each of the flow locations in accordance with WRI Report 94-4002 to calculate flood discharges. The regression analysis was performed utilizing the National Flood Frequency Program (NFF) (U.S. Department of the Interior, 2002). This program employs the New Jersey regional regression equations established in Special Report 38 (U.S. Department of the Interior, 1974) to calculate discharges for the 2-, 5-, 10-, 25-, 50- and 100year flood. These equations are applicable to rural and urbanized areas because they account for basin development through the Population Density variable. The discharges for the 500-year flood are extrapolated by the NFF. This involves fitting a log-Pearson Type III curve to the 2- and 100-year flood discharges and extrapolates the curve to the 500-year flood discharge.

The governing variables were input into the NFF program and regression flows output by the program were used as the discharge at the selected flow locations.

A summary of the drainage area-peak discharge relationships for all streams studied by detailed methods is shown in Table 5, "Summary of Discharges" and in Figure 1, "Frequency Discharge, Drainage Area Curves."

TABLE 5 - SUMMARY OF DISCHARGES

FLOODING SOURCE	DRAINAGE AREA	PEAK DISCHARGES (cfs)			
AND LOCATION	(sq. miles)	10-PERCENT	2-PERCENT	1-PERCENT	0.2-PERCENT
APPLEGATES CREEK Upstream of confluence with Debois Creek	1.68	246	425	536	872
ARDENA BROOK Upstream of confluence with Manasquan River	1.22	170	293	369	590

FLOODING SOURCE	DRAINAGE AREA		HARGES (cfs)		
AND LOCATION	(sq. miles)	10-PERCENT	2-PERCENT	<u>1-PERCENT</u>	0.2-PERCENT
BANNEN MEADOW BROOK					
Upstream of confluence with Manasquan River	2.00	327	551	690	1,094
BARREN NECK CREEK At limit of detailed study	1.22	230	390	500	800
BIG BROOK (DOWNSTREAM REACH) Upstream of Willow Brook	10.11	770	1,280	1,590	2,550
At mint of detailed study	0.22	730	1,230	1,550	2,500
BURKES CREEK Upstream of confluence with Debois Creek	1.43	175	307	388	631
CLAYPIT CREEK					
At Locust Avenue	1.54	285	480	605	1,000
At Lakeside Avenue	0.91	185	315	425	720
COMPTONS CREEK At Campbell Avenue	5.86	682	1,093	1,326	2,120
DEAL LAKE TRIBUTARIES					
*	3.00	330	570	750	*
*	1.00	120	350	520	900
*	0.70	10.70	35	45	90
*	0.01	1.10	4.40	6.50	20.20
DEBOIS CREEK Upstream of confluence with Manasquan River Upstream of confluence of	7.70	530	910	1,110	1,640
Applegates Creek and Debois Creek Tributary Approximately 800 feet	5.50	450	745	920	1,370
upstream of Jones Siding Road	2.08	163	282	348	518
DEBOIS CREEK TRIBUTARY Upstream of confluence with Debois Creek	1.17	218	366	453	699

	DRAINAGE				
FLOODING SOURCE	AREA	PEAK DISCHARGES (cfs)			
AND LOCATION	(sq. miles)	<u>10-PERCENT</u>	2-PERCENT	<u>1-PERCENT</u>	0.2-PERCENT
DOCTORS CREEK					
At Fowlers Bridge Road	17.20	1,180	1,830	2,170	3,150
limits	16.30	1,150	1,785	2,115	3,065
EAST CREEK					
At SR 36	2.31	463	771	947	1,385
At Middle Road	1.41	367	608	747	1.090
At SR 35	0.58	213	351	432	630
FLAT CREEK					
At SR 36	2.08	644	1.070	1.320	1.823
Upstream of confluence of	2	•••	-,	-,	-,
Monascunk Creek	0.86	334	559	692	910
Upstream of SR 36	0.67	198	325	401	575
CDAVELLV DUN					
At Lake Matawan Dam	2 57	580	1 107	1 413	2 405
Linstream of confluence	2.57	507	1,107	1,415	2,105
with Matadagank Divor					
North Brench	0.02	112	100	250	103
North Dranch	0.92	115	199	230	405
GROUNDHOG BROOK					
Upstream of confluence					
with Haystack Brook	1.56	178	306	382	606
Upstream of confluence of					
Polypod Brook	0.75	140	220	300	500
HAYSTACK BROOK					
Upstream of confluence	11.40	485	830	1,020	1,550
River North Branch					
Approximately 3 000 feet	6.30	402	675	832	1.292
upstream of Ramtown	0.00		0,0		- ,
Greenville Road					
Approximately 1,700 feet	4.34	348	587	725	1,135
from the Glenn Road					
crossing					
HOCKHOCKSON BROOK					
Upstream of junction with					
Pine Brook 1	6.86	590	990	1,230	2,100
Approximately 700 feet					
upstream of Water					
Street	4.88	540	910	1,140	1,500
Upstream of Roller Road	0.52	303	385	443	516

	DRAINAGE		DEAR DISCI	LADCES (afa)	
AND LOCATION	(sq. miles)	10-PERCENT	<u>2-PERCENT</u>	<u>1-PERCENT</u>	0.2-PERCENT
HOLLOW BROOK					
*	1.00	480	560	650	900
*	0.70	55	85	90	160
*	0.10	65	95	140	240
*	0.01	14	24	32	40
INDIAN RUN					
At confluence with					
Doctors Creek	1.80	630	900	1,045	1,550
At upstream corporate				,	
limits	1.60	615	875	1,025	1,500
JUMPING BROOK 1 At Neptune corporate					
limits Upstream of tributary, 800	3.70	970	1,500	1,760	2,490
feet upstream of					
corporate limits	2.47	680	1,090	1,270	1,800
At bridge at Shadow Lake	2.11	425	685	835	1,300
Road	1.10	280	455	555	820
LONG BROOK					
Upstream of confluence					
with Manasquan River	2.40	281	476	596	951
Upstream of Adelphia-					
Farmingdale Road	1.46	242	413	517	829
Upstream of Varnderveer					
Road	0.96	167	289	363	588
MAHORAS BROOK					
At downstream corporate					
limits	3.06	645	965	1,115	1,505
At NY & Long Branch					
Railroad	2.74	597	896	1,035	1,393
At Holland Road	1.37	366	549	635	855
Upstream of confluence					
with Waackaack Creek	1.30	825	1,245	1,425	1,920
MANASQUAN RIVER					
Avenue	22 16	1 200	1.062	2 220	2 022
Avenue Approximately 3,500 feet	33.40	1,380	1,903	2,239	2,932
downstream of West	00.75	1.000	1 52 6	1.000	0.500
Farms Road	28.65	1,200	1,/36	1,980	2,590

		JE PEAK DISCHARGES (cfs)					
AND LOCATION	(sq miles)	10-PERCENT	2-PERCENT	1_PERCENT	0.2-PERCENT		
AND EDEATION	<u>(39. 111103)</u>	<u>10-1 ERCEIVI</u>	<u>2-1 LICELITI</u>	<u>1-1 LAOLAU</u>	0.2 I LICEIVI		
MANASQUAN RIVER							
(continued)							
Upstream of confluence of							
Ardena Brook	25.18	1,099	1,566	1,786	2,335		
Upstream of confluence of							
Barren Meadow Brook	21.80	980	1,395	1,591	2,081		
Upstream of confluence of							
Long Brook	19.40	893	1,271	1,450	1,896		
Upstream of confluence of	10.41	~		0.02	1 1 5 5		
Debois Creek	10.41	544	774	883	1,155		
Unstream of Jackson							
Mills Road	8 46	459	653	745	975		
Unstream of confluence of	0.10	155	000	/ 15	510		
Manasquan River							
Tributary B	6.87	391	557	635	830		
MANASQUAN RIVER							
TRIBUTARY A							
Upstream of confluence							
with Manasquan River	2.10	325	545	685	1,085		
MANASQUAN KIVEK							
IRIBUTARY B							
with Manasquan Piver	1 42	214	366	458	707		
with Manasquari River	1.72	214	500	430	121		
MANASQUAN RIVER							
TRIBUTARY C							
Upstream of confluence							
with Manasquan River	1.80	312	527	657	1,043		
MARL BROOK	1 5 4	270	100	500	0.90		
Upstream of Mine Brook	1.54	270	460	580	980		
At limit of detailed study	1.04	210	370	470	800		
MATAWAN CREEK							
At mouth with Raritan							
Bay	13.19	1,850	3,480	4,440	7,560		
Upstream of Mohingson		,	,	,	,		
Brook	9.94	1,520	2,855	3,640	6,200		
At USGS gaging station at		-	-				
Lake Lefferts Dam	6.11	1,080	2,030	2,590	4,410		
At New Brunswick Road	4.18	830	1,555	1,990	3,380		
At upstream corporate							
limits	1.16	340	635	810	1,380		
	DRAINAGE						
--	----------------------------	------------	-----------	------------------	-------------	--	--
FLOODING SOURCE	AREA PEAK DISCHARGES (cfs)						
AND LOCATION	(sq. miles)	10-PERCENT	2-PERCENT	<u>1-PERCENT</u>	0.2-PERCENT		
MCCLEEC CDEEV							
At Navesink River Road	4.56	690	1,100	1,380	1,900		
Road	2.95	430	700	865	1.280		
At Sleepy Hollow Road	1.56	260	430	535	790		
MCGELLAIRDS BROOK At downstream corporate							
limits Upstream of Freehold/	14.99	760	1,240	1,510	2,490		
Manalapan corporate limits	2.46	143	272	334	601		
METEDECONK RIVER NORTH BRANCH Upstream of Howell-							
limits	34.90	671	998	1,160	1,612		
Gravelly Run	32.79	658	979	1,137	1,581		
Haystack Brook	21.39	535	797	926	1,287		
Greenville Road	20.78	528	786	913	1,235		
Farmingdale Road Approximately 4,500 feet upstream of Lakewood-	20.30	522	777	902	1,254		
Farmingdale Road Approximately 755 feet	19.69	514	765	889	1,235		
upstream of Kent Road	18.08	490	730	847	1,178		
Upstream of Church Road Approximately 600 feet downstream of Aldrich	15.40	452	672	781	1,085		
Road Unstream of Farmingdale	11.26	387	576	669	930		
Road Approximately 1,800 feet upstream of Hulse's	10.80	348	518	602	837		
Road	7.20	323	480	558	775		
MILLSTONE RIVER At Millstone/Monroe							
corporate limits	7.47	705	1,095	1,305	1,870		
At Sweetmans Lane	2.52	249	441	561	730		

	DRAINAGE					
FLOODING SOURCE	AREA	PEAK DISCHARGES (cfs)				
AND LOCATION	<u>(sq. miles)</u>	<u>10-PERCENT</u>	<u>2-PERCENT</u>	<u>1-PERCENT</u>	0.2-PERCENT	
MINE BROOK						
Upstream of Yellow						
Brook	5.63	740	1,230	1,540	2,500	
Downstream of Marl						
Brook	5.28	670	1,120	1,400	2,300	
Upstream of Marl Brook	3.74	500	850	1,060	1,800	
At limit of detailed study	2.40	350	600	760	1,220	
MIRY BOG BROOK						
Upstream of Yellow						
Brook	1.08	170	300	380	625	
MOHINGSON BROOK						
At confluence with						
Matawan Creek	2.44	570	1,070	1,360	2,320	
Upstream of GSP	2.17	525	985	1,255	2,140	
Upstream of Church						
Street	1.74	450	845	1,075	1,830	
At upstream corporate						
limits	0.65	225	425	540	920	
MONASCUNK CREEK						
At confluence with Flat						
Creek	0.96	285	469	577	835	
At SR 35	0.75	255	416	511	730	
NUT SWAMP BROOK						
At bridge at Shadow Lake	2.93	425	690	840	1,310	
At GSP	2.40	375	620	760	1,130	
At Middletown-Lincroft						
Road	1.55	255	425	525	785	
PARKERS CREEK						
At Sunnybank Drive	6.12	700	1,110	1,350	2,050	
Downstream of						
Parkers Creek North						
Branch and Wampum						
Brook	5 47	740	1 190	1.440	2.300	
Unstream of confluences	5.17	110	1,190	1,110	2,000	
with Parkers Creek						
North Branch and	1 50	200	100	500	020	
wampum Brook	1.38	290	40U 410	500	920	
At Main Street	1.24	250	410	500	01U 010	
At Kaliroad crossing	1.24	230	410	200	010	

	DRAINAGE				
AND LOCATION	AREA	10-PERCENT	2-PERCENT	1_PERCENT	0.2-PERCENT
	<u>(54. miles)</u>	10-1 ERCENT	2-1 ERCEINT	<u>1-1 ERCENT</u>	0.2-TERCENT
PARKERS CREEK NORTH BRANCH Upstream of confluence with Parkers Creek At limit of detailed study	1.03 0.83	180 150	310 250	380 310	600 510
PINE BROOK 1					
Upstream of confluence with Swimming River Upstream of Tinton	13.20	900	1,480	1,830	2,900
Avenue	11.04	950	1,560	1,930	3,100
Upstream of junction with Hockhockson Brook	4.18	430	730	900	1,950
POLYPOD BROOK					
Upstream of confluence					
with Groundhog Brook	0.72	174	220	255	413
POPLAR BROOK At confluence with					
Atlantic Ocean	3.74	593	1,044	1,292	1,990
Upstream of Monmouth Road Upstream of confluence	2.93	441	777	962	1,481
with Poplar Brook Tributary 2	1.70	531	676	762	864
Upstream of Willow	1.1.6	40.5	6 1 <i>a</i>		60 F
Drive	1.15	405	515	589	685
PORICY BROOK					
Navesink River	2 86	425	690	845	1 330
At Normandy Road	1.31	290	480	590	900
At Middletown-Lincroft		-			
Road	1.21	275	460	570	845
RAMANESSIN BROOK Upstream of confluence	(10	1.000	1 700	200	2 000
Approximately 1,200 feet northwest of Middletown and Stillwell Avenue,	0.49	1,000	1,700	200	2,900
downstream Approximately 1,200 feet northwest of Middletown and Stillwell Avenue	5.06	950	1,620	1,900	2,700
upstream	3.83	760	1,399	1,599	2,199

FLOODING SOURCE	DRAINAGE AREA <u>(sq. miles)</u>	10-PERCENT	PEAK DISCH 2-PERCENT	IARGES (cfs) <u>1-PERCENT</u>	0.2-PERCENT
RAMANESSIN BROOK					
(continued) Approximately 1,400 feet					
Road Upstream of Longstreet	2.43	510	830	1,000	1,460
Road	1.03	300	500	620	960
ROCKY BROOK (DOWNSTREAM REACH) At Disbrow Road	6.10	410	690	870	1,310
ROCKY BROOK (UPSTREAM REACH) Approximately 2,240 feet downstream of					
Perrineville Road	3.19	327	562	705	1,128
SHARK RIVER At Neptune corporate					
limits At Shark River Road	7.99 2.37	440 130	670 200	790 230	1,140 330
SWIMMING RIVER	61 70	2 944	0 352	11 176	21.070
USGS gage near Red	01.70	3,844	8,233	0.620	10,000
Bank At Swimming River Road	48.50 48.50	3,280 3,248	7,060 6,973	9,630 9,443	18,563
TEPEHEMUS BROOK SOUTH BRANCH Upstream of Freehold/ Manalapan corporate					
limits	1.74	200	340	430	790
TOMS RIVER At Millstone-Jackson					
corporate limits At upstream study limit	3.39 2.92	191 219	342 390	433 495	717 808
TOWN BROOK	0.00	205	(20)	7(0	1 220
At Park Avenue At SR 35	1.33	385 219	629 366	450	715
TURTLE MILL BROOK	4.00	600	000	1 100	2 600
*	4.20 0.64	200	250	320	650

*Data not available

FLOODING SOURCE		E PEAK DISCHARGES (cfs)				
AND LOCATION	(sq. miles)	10-PERCENT	<u>2-PERCENT</u>	<u>1-PERCENT</u>	0.2-PERCENT	
WAACKAACK CREEK At downstream corporate						
limits	7.44	1,200	1,800	2,080	2,800	
At SR 36	6.77	1,125	1,685	1,950	2,620	
At downstream corporate limits	5.64	1,125	1,685	1,950	2,620	
Upstream of confluence with Mahoras Brook	4.34	355	530	615	825	
WAMPUM BROOK						
At Main Street	2.86	390	630	760	1,200	
At Lewis Street	2.01	360	580	710	1,110	
WEAMACONK CREEK At downstream corporate						
limits Upstream of Freehold/	7.66	410	650	790	1,360	
Manalapan corporate	1.40	146	220	200	40.4	
limits	1.49	146	230	300	494	
Opsiream of US Route 9	1.02	106	107	219	360	
WEAMACONK CREEK TRIBUTARY At confluence with Weamaconk Creek	0.34	120	185	220	320	
At upstream corporate						
limits	0.19	90	135	160	215	
WEMROCK BROOK (within the Township of Freehold) Upstream of Freehold/ Manalapan corporate limits	2.58	215	401	423	694	
WHALE POND BROOK At Whale Pond Road Downstream of Neptune	3.94	320	730	1,080	2,700	
Highway	2.64	240	560	850	2,000	
Upstream of Neptune Highway	1.81	180	410	680	1,500	
WHALE POND BROOK AND TRIBUTARIES						
*	4.50	480	875	1,450	4,200	
*	0.70	75	260	350	610	
*	0.10	10	34	48	140	

*Data not available

	DRAINAGE					
FLOODING SOURCE	AREA		<u>PEAK DISCH</u>	IARGES (cfs)		
AND LUCATION	(sq. miles)	10-PERCENT	2-PERCENT	I-PERCENT	0.2-PERCENT	
WILLOW BROOK						
Downstream of						
confluence of						
Ramanessin Brook	14.07	1,700	2,800	3,400	5,200	
Upstream of confluence of						
Ramanessin Brook	7.58	1,065	1,790	2,735	3,275	
Downstream of CR 520	5.00	1,100	1,850	2,250	3,100	
Upstream of CR 520	2.25	700	1,200	1,500	2,400	
Upstream of confluence of						
East Branch Willow	1 75	400	700	000	1 450	
DIOOK At limit of datailed study	1.73	400	700	900	1,450	
At mint of detaned study	1.50	520	330	700	1,100	
WILLOW BROOK EAST						
BRANCH						
At confluence with						
Willow Brook	0.50	130	210	250	400	
	0.00		210	200	100	
WRECK POND BROOK						
Upstream of Old Mill						
Road	7.20	1,600	2,450	2,940	4,200	
		,	,	,		
YELLOW BROOK						
Downstream of Mine						
Brook	15.45	1,580	2,580	3,180	5,000	
Upstream of Mine Brook	9.82	1,020	1,680	2,090	3,350	
Downstream of Tributary			,	,	,	
to Yellow Brook	8.80	920	1,520	1,880	3,000	
Upstream of Tributary to					-	
Yellow Brook	7.72	820	1,380	1,710	2,800	
Junction North and South						
Branch	6.03	790	1,330	1,650	2,640	
Upstream of South Branch	2.02	370	630	790	1,300	
At limit of detailed study	1.76	350	590	750	1,220	
Upstream of confluence of						
Tributary to Yellow						
Brook	1.18	258	438	549	873	
YELLOW BROOK 2						
Upstream of the Township						
of Freehold/Township of						
Colts Neck corporate limits	1.76	360	610	770	1,220	
Upstream of the confluence						
of Tributary to Yellow						
Brook	1.18	258	438	549	873	
YELLOW BROOK 2						
Upstream of confluence	0.00	177	201	000	500	
with renow Brook 2	0.00	1/0	301	511	277	

.

. . . .

.

The stillwater elevations have been determined for the 10-, 2-, 1-, and 0.2-percent annual chance floods for the flooding sources studied by detailed methods and are summarized in Table 6, "Summary of Stillwater Elevations."

TABLE 6 - SUMMARY OF STILLWATER ELEVATIONS

	STILLWATER ELEVATION (feet NAVD)				
FLOODING SOURCE AND LOCATION	10-PERCENT	2-PERCENT	1-PERCENT	0.2-PERCENT	
PARKERS CREEK Shoreline within Borough of Shrewsbury	5.1	6.9	7.9	12.4	
PERRINEVILLE LAKE Entire shoreline	163.9	165.1	165.7	167.3	

3.2 Riverine Hydraulic Analyses

Analyses of the hydraulic characteristics of flooding from the source studied were carried out to provide estimates of the elevations of floods of the selected recurrence intervals. Users should be aware that flood elevations shown on the FIRM represent rounded whole-foot elevations and may not exactly reflect the elevations shown on the Flood Profiles or in the Floodway Data Tables in the FIS report. For construction and/or floodplain management purposes, users are encouraged to use the flood elevation data presented in this FIS in conjunction with the data shown on the FIRM.

Precountywide Analyses

Each incorporated community within, and the unincorporated areas of, Monmouth County, with the exceptions of the Borough of Freehold, Borough of Lake Como and Borough of Neptune City, has a previously printed FIS report. The hydraulic analyses described in those reports have been compiled and are summarized below.

For streams studied by detailed methods, water-surface elevations of floods of the selected recurrence intervals were predominantly computed through use of the USACE HEC-2 step-backwater program (USACE, 1976; 1974). Cross sections for the backwater analyses of the streams studied in detail were field-surveyed and located at close intervals above and below bridges and culverts, in order to compute the significant backwater effects of these structures in highly urbanized areas.

Water surface elevations of floods of the selected recurrence intervals were calculated by a flood/rainfall routing analysis for Deal Lake. Indian Run, in the Borough of Allentown, was studied using the SCS WSP-2 program (U.S. Department of Agriculture, 1976).

In the Township of Aberdeen, starting water surface elevations for Matawan Creek and Whale Creek were derived from the mean high tide. Starting water surface elevations were determined using the slope/area method for Mohingson Brook, and were derived from the FIS for the Borough of Matawan (FEMA, 1981) for Gravelly Brook.

In the Borough of Allentown, starting water surface elevations for Doctors Creek were taken from the FIS for the Township of Hamilton, Mercer County, New Jersey (FEMA, 1984). For Indian Run, starting water surface elevations were calculated using the slope/area method.

In the Borough of Brielle, starting water surface elevations for Roberts Swamp Brook (Downstream Reach) were obtained from the FIS for the Borough of Manasquan (U.S. Department of Housing and Urban Development, 1971).

In the Township of Colts Neck, starting water surface elevations were obtained from the FIS for the township of Middletown (FEMA, 1983) for Barren Neck Creek, Big Brook (Downstream Reach), Willow Brook and Yellow Brook. Starting elevations for Pine Brook 1 were obtained from the FIS for the Borough of Tinton Falls (FEMA, 1981). Starting elevations for Hockhockson Brook were derived from the Pine Brook 1 profiles, while starting water surface elevations for Marl Brook were derived from the Mine Brook Profiles. Starting water surface elevations for Mine Brook and Miry Bog Brook were obtained from the Yellow Brook profiles.

In the Borough of Deal, starting water surface elevations for Poplar Brook were taken from known tidal elevations.

In the Borough of Eatontown, starting water surface elevations for Wampum Brook were derived from a discharge rating curve. Starting water surface elevations for Parkers Creek were obtained from the FIS for the Borough of Oceanport (U.S. Department of Housing and Urban Development, 1976), and starting elevations for Whale Pond Brook were obtained from the FIS for the Borough of West Long Branch (FEMA, 1981).

In the Borough of Englishtown, starting water surface elevations for McGellairds Brook and Weamaconk Creek were obtained from the FIS for the Township of Manalapan (U.S. Department of Housing and Urban Development, 1977). Starting elevations for Weamaconk Creek Tributary were derived from the profiles for Weamaconk Creek.

In the Township of Freehold, starting water surface elevations for Applegates Creek, Burkes Creek, Debois Creek, Debois Creek Tributary, Manasquan River Tributary A, Manasquan River Tributary B, Manasquan River Tributary C, Tepehemus Brook South Branch, Yellow Brook and Yellow Brook Tributary were calculated using the slope/area method. Starting elevations for Manasquan River were obtained from the FIS for the Township of Howell (FEMA, 1982). Starting elevations for McGellairds Brook, Weamaconk Creek and Wemrock Brook were obtained from the FIS for the Township of Manalapan (U.S Department of Housing and Urban Development, 1977).

In the Township of Hazlet, starting water surface elevations for East Creek and Flat Creek were calculated using the slope/area method. Starting elevations for Monascunk Creek were derived from the Flat Creek profiles. Starting elevations for Waackaack Creek were obtained from the FIS for the Borough of Keansburg (FEMA, 1982).

In the Township of Holmdel, starting water surface elevations for Waackaack Creek were obtained from the FIS for the Township of Hazlet (FEMA, 1982), and starting elevations for Mahoras Brook were derived from the Waackaack Creek profiles. Starting water surface elevations for Willow Brook were obtained from the FISs for the Townships of Colts Neck and Marlboro (FEMA, 1981 & 1982), and the starting elevations for Ramanessin Brook and Willow Brook East Branch were derived from the Willow Brook profiles.

In the Township of Howell, starting water surface elevations for Ardena Brook, Bannen Meadow Brook, Gravelly Run, Groundhog Brook, Haystack Brook, Long Brook and Manasquan River were calculated using the slope/area method. Starting elevations for Metedeconk River North Branch were obtained from the FIS for the Township of Lakewood, Ocean County, New Jersey (FEMA, 1976). Starting elevations for Polypod Brook were derived from the Groundhog Brook profiles.

In the Borough of Keansburg, starting water surface elevations for Waackaack Creek were taken from the Spring High Tide for Raritan Bay.

In the Borough of Matawan, starting water surface elevations for Gravelly Brook and Matawan Creek were calculated using spillway rating curves.

In the Township of Middletown, starting water surface elevations for Claypit Creek, McClees Creek, Poricy Brook and Swimming River were obtained from the Mean Low Tide of Navesink River. Starting elevations for Comptons Creek were calculated using the slope/area method. Starting elevations for Mahoras Brook and Waackaack Creek were obtained from the FIS for the Township of Holmdel (FEMA, 1981). Starting elevations for Jumping Brook 1 and Nut Swamp Brook were derived from the profiles for Shadow Lake. Starting elevations for Town Brook were derived from the profiles for Comptons Creek.

In the Township of Millstone, starting water surface elevations for Rocky Brook (Upstream Reach) and Toms River were calculated using the slope/area method. Starting elevations for Millstone River were obtained from the FIS for the Township of Monroe, Middlesex County, New Jersey (FEMA, unpublished). Starting elevations for Rocky Brook (Downstream Reach) were derived from the profiles for Millstone River.

In the Township of Ocean, starting water surface elevations for Poplar Brook and Whale Pond Brook were obtained from the FIS for the Borough of Deal (FEMA, 1976). Starting elevations for Deal Tributary 1, Deal Tributary 2, Deal Tributary 3, Deal Tributary 3A, Deal Tributary 4, Deal Tributary 4A, Hog Swamp Brook and Hollow Brook were derived from the profiles for Deal Lake. Starting elevations for Poplar Brook Tributary 1, Poplar Brook Tributary 2 and Poplar Brook Tributary 3 were derived from the profiles for Poplar Brook.

In the Borough of Shrewsbury, starting water surface elevations for Parkers Creek were obtained from the FIS for the Boroughs of Oceanport and Little Silver (FEMA, 1976 & 1977). Starting elevations for Parkers Creek North Branch, were derived from the profiles for Parkers Creek.

In the Borough of Spring Lake Heights, starting water surface elevations for Wreck Pond Brook were obtained from the FIS for the Township of Wall (U.S. Department of Housing and Urban Development, 1976).

In the Borough of Tinton Falls, starting water surface elevations for Pine Brook 1 were calculated using the slope/area method. Starting elevations for Jumping Brook 2 were obtained from the FIS for the Borough of Neptune (U.S. Department of Housing and Urban Development, 1978). Starting elevations for Parkers Creek were obtained from the FIS for the Borough of Eatontown (FEMA, 1981). Starting elevations for Shark River were obtained from the FIS for the Township of Wall (U.S. Department of Housing and Urban Development, 1976). Starting elevations for Swimming River were obtained from the FIS for the Township of Middletown (FEMA, 1983).

In the Borough of Union Beach, starting water surface elevations for Waackaack Creek were obtained from the FIS for the Borough of Keansburg (FEMA, 1982).

In the Borough of Little Silver, water-surface profiles for floods of the selected recurrence intervals were computed using HEC-2. Starting water surface elevations for Little Silver Creek, Little Silver Tributary 1 and Little Silver Tributary 2 were obtained from a USACE tidal frequency study. Starting water surface elevations for the remaining streams were determined using the profiles of the downstream stream at the confluence.

Revised Analyses

Information on the methods used to determine peak discharge-frequency relationships for Manalapan Brook, restudied as part of this countywide FIS, is shown below.

The study area on Manalapan Brook extends from the downstream corporate limit of Township of Manalapan to Moonlight Court in the Township of Millstone. This stream contains 13 distinct bridges or other structures as it traverses a suburban area. Using aerial photographs, cross-section locations were identified for use in the modeling program. These locations were then surveyed to obtain accurate information on the river channel and bank configurations. The surveyors also obtained the necessary dimensions of crossing structures and overlying streets.
Of the structures, ten (10) are bridges/culverts for roads or pedestrian paths. One surveyed bridge is a home-built stream crossing made of tree trunks and planks. Upon close inspection it was determined that this structure will likely not hold up in severe floods; therefore it was not included in the hydraulic model. The other two structures are small dams located at the downstream ends of Millhurst Pond and Bulks Lake. Neither reservoir has significant surcharge capacity nor serves as a flood control structure. Therefore, this study neglects any detention effects of these ponds.

Using the HEC-RAS 3.1.3 computer model (USACE, 2005) with RiverCAD software (Boss, 2007), a backwater hydraulic model of the river was developed. The study includes approximately 52,000 feet (9.8 miles) of river. The hydraulic analysis was performed using 95 river cross-sections.

Based on the information obtained in the survey and site inspections, several roughness coefficients (Manning's "n" values) are used for the overbank areas, as follows:

- 0.100 Trees: heavy stand of timber, few down trees.
- 0.053 Development areas (Sub-Urban)
- 0.050 Brush and heavy weeds
- 0.035 Pasture (native Grass)

The bottom of the channel varies greatly in elevation, from 66 feet in the northern portion to 180 feet in the southern portion. The channel has small stones and some small pools. Banks are mildly sloped in the northern portion and fairly steep in the southern portion and they are lined with trees and brush along the channel. Based on site inspections, Manning's "n" values of 0.045 is assigned to the channel.

Water surface elevations for design floods at the selected cross sections were computed through use of the HEC-RAS 3.1.3 computer program. The downstream beginning water surface elevations are taken from the profiles for Manalapan Brook found in the FIS for Monroe Township, Middlesex County, New Jersey.

Flood profiles were drawn showing computed water surface elevations for floods of the selected recurrence intervals.

Channel roughness factors (Manning's "n") for these hydraulic computations were assigned on the basis of field inspection of floodplain areas and the study of past floods. Channel roughness factors for streams studied by detailed methods are listed in Table 7, "Manning's "n" Values."

TABLE 7 – MANNING'S "n" VALUES

Stream	Channel "n"	Overbank "n"	
Applegates Creek	0.030-0.035	0.060-0.080	
Ardena Brook	0.030-0.040	0.060-0.070	
Bannen Meadow Brook	0.025-0.035	0.060-0.080	
Barclay Brook	*	*	
Barren Neck Creek	0.020-0.035	0.055	
Betty Brook	*	*	
Big Brook	0.025-0.035	0.050-0.055	
Big Brook Tributary H	*	*	
Burkes Creek	0.025-0.040	0.050-0.100	
Claypit Creek	0.016-0.050	0.080	
Comptons Creek	0.018-0.060	0.080-0.100	
Cranberry Brook	*	*	
Deal Tributary 1	0.035-0.040	0.040-0.060	
Deal Tributary 2	0.035-0.040	0.040-0.060	
Deal Tributary 3	0.035-0.040	0.040-0.060	
Deal Tributary 3A	0.035-0.040	0.040-0.060	
Deal Tributary 4	0.035-0.040	0.040-0.060	
Deal Tributary 4A	0.035-0.040	0.040-0.060	
Debois Creek	0.025-0.035	0.040-0.080	
Debois Creek Tributary	0.025-0.040	0.060-0.080	
Deep Run	*	*	
Deep Run Tributary A	*	*	
Deep Run Tributary B	*	*	
Deep Run Tributary C	*	*	
Doctors Creek	0.030-0.050	0.050-0.080	
East Creek	0.050-0.100	0.060-0.140	
Flat Creek	0.014-0.060	0.070-0.100	
Gander Brook	*	*	
Gravelly Brook	*	*	
Gravelly Run	0.018-0.040	0.040-0.100	
Groundhog Brook	0.030-0.050	0.045-0.060	
Hannabrand Brook	*	*	
Haystack Brook	0.025-0.040	0.050-0.080	
Heroys Pond Creek	*	*	
Hockhockson Brook	0.025-0.035	0.055	
Hog Swamp Brook	0.035-0.040	0.040-0.060	
Hollow Brook	0.035-0.040	0.040-0.060	
Indian Run	0.060-0.070	0.100-0.170	
Judas Creek (Upstream Reach)	*	*	
Jumping Brook 1	0.012-0.070	0.055-0.100	
Jumping Brook 2	0.015-0.035	0.055	
Little Silver Creek	*	*	

*Data not available

TABLE 7 - MANNING'S "n" VALUES - continued

Stream	Channel "n"	Overbank "n"
Little Silver Creek Tributary A	*	*
Little Silver Creek Tributary I	*	*
Little Silver Creek Tributary II	*	*
Little Silver Creek Tributary II-A	*	*
Little Silver Creek Tributary II-B	*	*
Long Brook	0.025-0.045	0.050-0.080
Mac's Brook	*	*
Mahoras Brook	0.013-0.070	0.070-0.100
Manalapan Brook	0.035-0.053	0.035-0.100
Manalapan Brook Tributary A	*	*
Manalapan Brook Tributary B	*	*
Manasquan River	0.030	0.060-0.150
Manasquan River Tributary A	0.030-0.045	0.050-0.150
Manasquan River Tributary B	0.030-0.040	0.050-0.100
Manasquan River Tributary C	0.030-0.045	0.050-0.150
Marl Brook	0.035	0.055
Matawan Creek	0.018-0.040	0.040-0.100
Matchaponix Brook	*	*
McClees Creek	0.018-0.040	0.050-0.100
McGellairds Brook	0.030-0.080	0.040-0.100
Metedeconk River North Branch	0.045-0.060	0.050-0.070
Milford Brook	*	*
Millstone River	0.045	0.100
Mine Brook	0.013-0.035	0.055
Miry Bog Brook	0.015-0.035	0.045-0.055
Mohingson Brook	0.018-0.040	0.060-0.100
Monascunk Creek	0.013-0.070	0.060-0.100
Musquash Brook	*	*
Navesink River	*	*
Nut Swamp Brook	0.012-0.060	0.070-0.085
Parkers Creek	0.015-0.040	0.050-0.065
Parkers Creek, North Branch	0.015-0.040	0.050-0.065
Pine Brook 1	0.015-0.040	0.055
Pine Brook 2	*	*
Pine Brook Tributary C	*	*
Polypod Brook	0.030	0.060
Poly Pond Brook (Wall Township)	*	*
Poly Pond Brook (Spring Lake Heights)	*	*
Poplar Brook	0.035-0.050	0.040-0.070
Poplar Brook Tributary 1	0.035-0.040	0.040-0.060
Poplar Brook Tributary 2	0.035-0.040	0.040-0.060
Poplar Brook Tributary 3	0.035-0.040	0.040-0.060

*Data not available

TABLE 7 – MANNING'S "n" VALUES

Stream	Channel "n"	Overbank "n"		
Poricy Brook	0.014-0.040	0.060-0.150		
Ramanessin Brook	0.035-0.040	0.055-0.065		
Roberts Swamp Brook	*	*		
Rocky Brook (Downstream Reach)	0.035-0.045	0.070-0.170		
Rocky Brook (Upstream Reach)	0.030-0.040	0.060-0.090		
Shark River	0.035	0.035		
Shark River Tributary D	*	*		
Shark River Tributary E	*	*		
Shrewsberry River	*	*		
Still House Brook	*	*		
Swimming River	0.016-0.040	0.070-0.090		
Tepehemus Brook	*	*		
Tepehemus Brook South Branch	0.035-0.048	0.040-0.120		
Toms River	0.035-0.050	0.060-0.110		
Town Brook	0.013-0.060	0.050-0.090		
Town Neck Creek	*	*		
Turtle Mill Brook	*	*		
Upper Yellow Brook	*	*		
Waackaack Creek	0.014-0.080	0.013-0.100		
Wampum Brook	0.015-0.040	0.050-0.065		
Watson Creek	*	*		
Weamaconk Creek	0.040-0.050	0.045-0.120		
Weamaconk Creek Tributary	0.013-0.035	0.060		
Wells Brook	*	*		
Wemrock Brook	0.045-0.052	0.090		
Whale Creek	0.018-0.040	0.060-0.100		
Whale Pond Brook	0.015-0.075	0.030-0.070		
Whale Pond Tributary 1	*	*		
Whale Pond Tributary 2	*	*		
Willow Brook	0.015-0.040	0.050-0.065		
Willow Brook Tributary F	*	*		
Willow Brook Tributary G	*	*		
Willow Brook, East Branch	0.040-0.045	0.070		
Wreck Pond East Branch	*	*		
Wreck Pond Brook	*	*		
Yellow Brook	0.015-0.040	0.045-0.080		
Yellow Brook 2	0.030-0.040	0.050-0.080		
Yellow Brook Tributary 2	0.030	0.040-0.060		
Yellow Brook Tributary K	*	*		
Yellow Brook Tributary L	*	*		

*Data not available

Locations of selected cross sections used in the hydraulic analyses are shown on the Flood Profiles (Exhibit 1). For stream segments for which a floodway was computed (Section 4.2), selected cross sections are also shown on the FIRM (Exhibit 2).

All elevations are referenced to the North American Vertical Datum of 1988 (NAVD 88).

All qualifying bench marks within a given jurisdiction that are cataloged by the National Geodetic Survey (NGS) and entered into the National Spatial Reference System (NSRS) as First or Second Order Vertical and have a vertical stability classification of A, B, or C are shown and labeled on the FIRM with their 6-character NSRS Permanent Identifier.

Bench marks cataloged by the NGS and entered into the NSRS vary widely in vertical stability classification. NSRS vertical stability classifications are as follows:

- Stability A: Monuments of the most reliable nature, expected to hold position/elevation well (e.g., mounted in bedrock)
- Stability B: Monuments which generally hold their position/elevation well (e.g., concrete bridge abutment)
- Stability C: Monuments which may be affected by surface ground movements (e.g., concrete monument below frost line)
- Stability D: Mark of questionable or unknown vertical stability (e.g., concrete monument above frost line, or steel witness post)

In addition to NSRS bench marks, the FIRM may also show vertical control monuments established by a local jurisdiction; these monuments will be shown on the FIRM with the appropriate designations. Local monuments will only be placed on the FIRM if the community has requested that they be included, and if the monuments meet the aforementioned NSRS inclusion criteria.

To obtain current elevation, description, and/or location information for bench marks shown on the FIRM for this jurisdiction, please contact the Information Services Branch of the NGS at (301) 713-3242, or visit their Web site at www.ngs.noaa.gov.

It is important to note that temporary vertical monuments are often established during the preparation of a flood hazard analysis for the purpose of establishing local vertical control. Although these monuments are not shown on the FIRM, they may be found in the Technical Support Data Notebook associated with this FIS and FIRM. Interested individuals may contact FEMA to access this data.

3.3 Coastal Hydrologic Analyses

For all other municipalities bordering the Atlantic Ocean, and for the Raritan Bay, Navesink River and Shrewsbury River, the determination of coastal inundation caused by the passage of a hurricane storm surge was approached by the joint probability method (U.S. Department of Commerce, 1970). The storm populations were described by probability distributions of five parameters which influence surge heights. These were central pressure depression (which measures the intensity of the storm), radius to maximum winds, forward speed of the storm, shoreline crossing point and crossing angle. These characteristics were described statistically, based upon an analysis of observed storms in the vicinity of New Jersey. Several primary sources of data were researched for this information (U.S. Department of Commerce: 1975, 1970, 1965, 1957; National Hurricane Research Project No. 5, 1957). The storm parameters adopted for New Jersey are shown in Table 8, "Parameter Values for Surge Evaluation."

A numerical hydrodynamic model of the region was used to simulate the coastal surge generated by any chosen storm (any combination of the five storm parameters defined previously). Performing such simulations for a large number of storms – each of known total probability – permits the establishment of frequency distribution of surge heights at a coastal location. The astronomic tide for the region is then statistically combined with the computed storm surge to yield recurrence intervals of total water level. This procedure is detailed in the Coastal Flooding Handbook (Tetra Tech, 1977).

Wave heights and corresponding wave crest elevations were determined using the National Academy of Sciences (NAS) methodology (1977). This methodology considers maximum conditions associated with the 1% annual chance flood, and uses transects which are oriented perpendicular to the mean sea level shoreline to deduce wave crest elevations. The stillwater elevations and the maximum wave crest elevations of the selected recurrence intervals are shown in Table 9, "Summary of Stillwater Elevations."

· · · · · · · · · · · · · · · · · · ·									
CENTRAL PRESSURE (INCHES HG)	27.39	27.68	27.97	28.26	28.55	28.84	29.12	29.40	29.70
ASSIGNED PROBABILITIES STORMS OVER LAND STORMS OVER SEA	0.00	0.00 0.02	0.000 0.055	0.000 0.100	0.000 0.145	0.00 0.15	0.80 0.33	0.125 0.125	0.075 0.075
STORM RADIUS (NAUTICAL MILES [NM])					37.5				
ASSIGNED PROBABILITY					1.0				
FORWARD SPEED (KNOTS)	2	0			30			10	
ASSIGNED PROBABILITIES: STORMS OVER LAND STORMS OVER SEA	0. 0.	76 56			0.15 0.44		0.	.09 .00	
DIRECTION (DEGREE)			-11				20		
ASSIGNED PROBABILITY: STORMS OVER LAND STORMS OVER SEA			0.32 0.06				0.68 0.94		
SPATIAL OCCURRENCE RATE STORMS/NM YEAR	1.22 2.28	X 10 ⁻³ X 10 ⁻³		Sto	orms Over L orms Over S	and Sea			
FEDERAL EMERGENCY MANAGEMENT AGENCY									
MONMOUTH COUNT (ALL JURISDICTION	Y, NJ NS)	PA	RAME	TER VA	ALUES	FOR S	URGE	ELEVA	TIONS

STILLWATER ELEVATION (feet NAVD) FLOODING SOURCE AND LOCATION **10-PERCENT** 2-PERCENT **1-PERCENT** 0.2-PERCENT ATLANTIC OCEAN Shoreline within Borough of Allenhurst 5.5 6.8 7.4 9.0 Shoreline within City of Asbury Park 5.5 6.8 7.4 / 11.9* 9.0 Shoreline within Borough of Avon-by-5.5 7.4 / 11.9* 9.0 6.8 the-Sea 9.0 Shoreline within Borough of Bradley 5.5 6.8 7.4 / 11.9* Beach 7.3 / 8.9* 8.8 Shoreline within Borough of Brielle 6.7 5.5 Shoreline within Village of Loch 5.5 6.8 7.4 9.0 Arbour 6.9 7.5 Shoreline within Borough of Deal 5.5 9.1 Shoreline within Township of Wall 7.9 8.9 12.9 6.0 NAVESINK RIVER Shoreline within Borough of Fair Haven 5.9 7.3 8.1 10.4 8.1 / 10.9* 10.4 Shoreline within Township of Middletown 5.9 7.3 10.4 Shoreline within Borough of Red Bank 5.9 7.3 8.1 **RARITAN BAY** 10.5 / 16.9* Shoreline within Borough of Keansburg 6.1 9.1 13.4 Shoreline within Township of Middletown 6.1 9.0 10.5 / 16.9* 12.9 Shoreline within Borough of Matawan 6.1 9.3 10.5 13.6 10.7 / 16.9* 13.8 At confluence of Matawan Creek with 6.3 9.5 **Raritan Bay** 10.8 / 16.9* 14.1 6.3 9.6 At western corporate limits of Township of Aberdeen 6.3 9.5 10.7 13.8 Shoreline within Township of Hazlet 10.7 / 15.9* Shoreline within Borough of Keyport 6.3 9.5 13.8 Shoreline within Borough of Union Beach 13.8 6.3 9.5 5.5 SANDY HOOK BAY 9.7 Shoreline within Borough of Highlands 6.3 8.8 11.8 SHARK RIVER Shoreline within Township of Wall 6.0 7.9 8.9 12.9 SHREWSBURY RIVER 5.9 7.3 8.1 / 10.9* 10.4 Shoreline within Township of Middletown

TABLE 9 - SUMMARY OF COASTAL STILLWATER ELEVATIONS

*Stillwater Elevation / Maximum Wave Crest Elevation

	STILLWATER ELEVATION (feet NAVD)					
FLOODING SOURCE AND LOCATION	10-PERCENT	2-PERCENT	<u>1-PERCENT</u>	0.2-PERCENT		
SOUTH SHREWSBURY RIVER Shoreline within Borough of Oceanport	5.4	6.9	8.0	12.9		
WRECK POND BROOK Shoreline within Borough of Spring Lake Heights	7.4	9.0	9.4	13.7		

TABLE 9 - SUMMARY OF COASTAL STILLWATER ELEVATIONS - continued

*Stillwater Elevation / Maximum Wave Crest Elevation

3.4 Coastal Hydraulic Analyses

Areas of coastline subject to significant wave attack are referred to as coastal high hazard zones. The USACE has established the 3-foot breaking wave as the criterion for identifying the limit of coastal high hazard zones. The 3-foot wave has been determined as the minimum size wave capable of causing major damage to conventional wood frame and brick veneer structures.

The methodology for analyzing the effects of wave heights associated with coastal storm surge flooding is described in the NAS report (National Academy of Sciences, 1977). This method is based on three major concepts. First, depth-limited waves in the shallow water reach a maximum breaking height that is equal to 0.78 times the stillwater depth, and the wave crest is 70 percent of the total wave height above the stillwater level. Second, wave height may be diminished by the dissipation of energy due to the presence of obstructions such as sand dunes, dikes, sea walls, buildings and vegetation. The amount of energy dissipation is a function of the physical characteristics of the obstructions and is determined by procedures outlined in the <u>User's Manual for Wave Height Analysis</u> (FEMA, 1981). Third, wave height can be regenerated in open fetch areas due to the transfer of wind energy to the water. This added energy is related to fetch length and depth.

As of 1989, FEMA defines a "coastal high hazard area" as an area of special flood hazards extending from offshore to the inland limit of a primary frontal dune along an open coast or any other area subject to high velocity wave actions (i.e., wave heights greater than or equal to 3 feet) from storms or seismic sources. The "primary frontal dune" is defined as a continuous or nearly continuous mound or ridge of sand with relatively steep seaward and landward slopes immediately landward and adjacent to the beach and subject to erosion and overtopping from high tides and waves during major coastal storms. The inland limit of the primary frontal dune occurs at the point where there is a distinct change from relatively steep slope to a relatively mild slope.

Wave heights were computed along transects (cross-section lines) located along the coastal areas, as illustrated in Figure 3 in accordance with the <u>User's Manual</u> for <u>Wave Height Analysis</u> (FEMA, 1981). The transects were located perpendicular to the shoreline, representing sections of similar characteristics. Transects were spaced close together in areas of complex topography and dense development. In areas having more uniform characteristics, they were spaced at larger intervals. It was also necessary to locate transects in areas where unique flooding existed and in areas where computed wave heights varied significantly between adjacent transects.

Figure 2, "Transect Location Map," illustrates the locations of transects, and Table 10, "Transect Descriptions," provides a list of the transect locations and stillwater elevations, as well as initial wave crest elevations. In addition, Table 9 provides the 1-annual chance stillwater and maximum wave crest elevations for each transect in the County.

TABLE 10 – TRANSECT DESCRIPTIONS

		ELEVATION (feet NAVD)			
			MAXIMUM		
TRANSECT	LOCATION	1-PERCENT	WAVE CREST ¹		
1	*	7.3	8.9		
2	*	7.3	8.9		
3	*	7.3	8.9		
4	*	73	8.9		
5	*	73	8.9		
6	*	7.3	8.9		
7	*	7.5	8.0		
, o	From Whiting Avenue, autonded to the	7.5	11.0		
0	southern corporate limits of the Borough		11.9		
9	From Brielle Road, extended, to Whiting Avenue, extended	7.4	11.9		
10	From Ocean Avenue, extended, to Brielle Road, extended	7.4	11.9		
11	From northern corporate limits of the Borough of Manasquan to Ocean Avenue, extended	7.4	11.9		
12	From Boston Boulevard, extended, to Sea	7.4	11.9		
13	From the Terrace, extended, to Boston Boulevard, extended	7.4	11.9		
14	From the northern corporate limits of the Borough of Sea Girt to the Terrace, extended	7.4	11.9		
15	From the southern corporate limits of the Borough of Spring Lake to Union Avenue, extended	7.4	11.9		
16	From Union Avenue, extended, to Morris Avenue, extended	7.4	11.9		
17	From Morris Avenue, extended, to Pitney Avenue, extended	7.4	11.9		
18	From 18 th Avenue, extended, to the southern corporate limits of the Borough of Belmar	7.4	11.9		
19	From 6 th Avenue, extended, to 18 th Avenue, extended	7.4	11.9		
20	From 5 th Avenue, extended, to 6 th Avenue, extended	7.4	11.9		
21	From the northern corporate limits of the Borough of Belmar to 5 th Avenue,	7.4	11.9		

extended ¹ Because of map scale limitations, the maximum wave elevation may not be shown on the FIRM *Data not available

		ELEVATION (feet NAVD)			
<u>TRANSECT</u>	LOCATION	1-PERCENT	MAXIMUM WAVE CREST ¹		
22	The entire Shark River shoreline within the Borough of Belmar	7.4	8.9		
23	From the corporate boundary of the Boroughs of Fair Haven and Rumson to Oceanic Bridge	7.4	8.9		
24	From Sylvan Lake to the confluence of Shark River	7.4	12.0		
25	From the southern limits of the Borough of Bradley Beach to Brinley Avenue	7.4	12.0		
26	From Brinley Avenue to the northern corporate limits of the Borough of Bradley Beach	7.4	12.0		
27	From Pitman Avenue, extended, to the southern corporate limits of the Township of Neptune	7.4	11.9		
28	From the northern corporate limits of the Township of Neptune Avenue to Pitman Avenue, extended	7.4	11.9		
29	*	7.4	11.9		
30	*	7.4	11.9		
31	*	7.4	11.9		
32	*	7.4	11.9		
33	From the southern corporate limits of the Borough of Deal to Parker Avenue, extended	7.5	11.9		
34	From Parker Avenue, extended, to the northern corporate limits of the Borough of Deal	7.5	11.9		
35	From the southern corporate limits of the City of Long Branch to Pullman Avenue, extended	7.5	11.9		
36	From Pullman Avenue, extended, to Sternberger Avenue, extended	7.6	11.9		
37	From Sternburger Avenue, extended, to Brighton Avenue, extended	7.6	11.9		
38	From Brighton Avenue, extended, to Sea View Avenue, extended	7.6	11.9		
39	From Sea View Avenue, extended, to the northern corporate limits of the City of Long Branch	7.7	12.9		
¹ Because of r *Data not av	nap scale limitations, the maximum wave elevate ailable	ion may not be shown	on the FIRM		

$\underline{TABLE \ 10-TRANSECT \ DESCRIPTIONS}-continued$

		ELEVATION (feet NAVD)			
			MAXIMUM		
<u>TRANSECT</u>	LOCATION	1-PERCENT	WAVE CREST ¹		
40	From Cottage Street, extended, to the southern corporate limits of the Borough	9	14.9		
41	From the northern corporate limits of the Borough of Monmouth Beach, to Cottage Street, extended	9	14.9		
42	The South Shrewsbury River shoreline within the Borough of Sea Bright	8	10.9		
43	From the southern corporate limits of the Borough of Sea Bright to approximately 1,000' north of Imbrie Place, extended	7.8	12.9		
44	From approximately 1,000' north of Imbrie Place, extended, to approximately 2,800' north of Rumson Road, extended	7.8	12.9		
45	From the northern corporate limits of the Borough of Monmouth Beach to Monmouth Parkway, extended	8.0	10.9		
46	From Monmouth Parkway, extended, to Raccoon Island	8.0	10.9		
47	From Raccoon Island to Manahassett Creek	8.0	10.9		
48	The entire Branchport Creek and Manahassett Creek shorelines within the City of Long Branch	8.0	9.9		
49	From the south side of Paag Court	8.0	10.9		
50	From the south side of Little Silver Point Road	8.0	10.9		
51	From the north side of Little Silver Point Road	8.0	10.9		
52	From the eastern shore of Oyster Bay to the corporate limits of the Boroughs of Little Silver and Rumson	8.0	10.9		
53	From Rumson Road to the eastern shore of Oyster Bay	8.0	11.9		
54	From approximately 1,000' above Hartshorne Lane, extended, to Rumson Road	8.0	7.9		
55	From Oceanic Bridge to approximately 1,000' above Hartshorne Lane, extended	8.1	10.9		
56	Entire Shark River shoreline within the Township of Neptune	8.1	10.9		

¹ Because of map scale limitations, the maximum wave elevation may not be shown on the FIRM

		ELEVATION (feet NAVD)			
<u>TRANSECT</u>	LOCATION	1-PERCENT	MAXIMUM WAVE CREST ¹		
57	From Conover Lane, extended, to Hubbards Bridge	8.1	9.9		
58	From Hubbards Bridge to Newman Spring Road	8.1	9.9		
59	From Jones Point to Conover Lane, extended	8.1	10.9		
60	From Claypit Creek to Jones Point	8.1	10.9		
61	From Tan Vat Road, extended, to Claypit Creek	8.1	10.9		
62	From the eastern corporate limits of the Township of Middletown to Tan Vat Road, extended	8.1	10.9		
63	From approximately 2,800' north of Rumson Road, extended, to the northern corporate limits of the Borough of Sea Bright	7.9	12.9		
64	The entire Shrewsbury River shoreline within the Borough of Sea Bright	8.1	10.9		
65	From Shrewsbury River, approximately 150' west of the intersection of 5 th Street and Valley Avenue	9.7	15.7		
66	From Sandy Hook Bay, approximately 250' northwest of the intersection of Central Avenue and Shore Drive	9.7	15.7		
67	From Sandy Hook Bay, approximately 800' northwest of the intersection of Central Avenue and Shore Drive	9.7	15.7		
68	From Beverout Place, extended, to the eastern corporate limits of the Borough of Highlands	10.5	15.9		
69	From Cedar Place, extended, to Beverout Place, extended	10.5	15.9		
70	From Ballinswood Road, extended, to Cedar Place, extended	10.5	15.9		
71	From 1 st Avenue, extended, to Ballinswood Road, extended	10.5	15.9		
72	From Avenue A, extended, to 1 st Avenue, extended	10.5	15.9		
73	From Bowne Avenue, extended, to Avenue A, extended	10.5	15.9		

¹ Because of map scale limitations, the maximum wave elevation may not be shown on the FIRM

		ELEVATION (feet NAVD)			
<u>TRANSECT</u>	LOCATION	1-PERCENT	MAXIMUM WAVE CREST ¹		
74	From the western corporate limits of the Borough of Atlantic Highlands to Bowne Avenue, extended	10.5	16.9		
75	From Brevent Avenue, extended, to the eastern corporate limits of the Township of Middletown	10.5	16.9		
76	From the State of New Jersey Marina to Brevent Avenue, extended	10.5	16.9		
77	From Cedar Avenue, extended, to the State of New Jersey Marina	10.5	16.9		
78	From the mouth of Ware Creek to Cedar Avenue, extended	10.5	16.9		
79	From the mouth of Comptons Creek to the mouth of Ware Creek	10.5	16.9		
80	From approximately 3,000' east of Wilson Avenue, extended, to the mouth of Comptons Creek	10.5	16.9		
81	From Wilson Avenue, extended, to approximately 3,000' east of Wilson Avenue	10.5	16.9		
82	From the mouth of Pews Creek to Wilson Avenue, extended	10.5	16.9		
83	From the western corporate limits of the Township of Middletown to the mouth of Pews Creek	10.5	16.9		
84	*	10.5	16.9		
85	*	10.5	16.9		
86	*	10.5	16.9		
87	*	10.5	16.9		
88	*	10.5	16.9		
89	*	10.5	16.9		
90	*	10.5	16.9		
91	*	10.5	16.9		
92	*	10.7	16.9		
93	*	10.7	16.9		
94	*	10.7	16.9		
95	*	10.7	16.9		

¹ Because of map scale limitations, the maximum wave elevation may not be shown on the FIRM *Data not available

		ELEVATION (feet NAVD)			
TRANSECT	LOCATION	1-PERCENT	MAXIMUM WAVE CREST ¹		
95	*	10.7	16.9		
97	*	10.7	16.9		
98	*	10.7	16.9		
99	*	10.7	16.9		
100	*	10.7	16.9		
101	*	10.7	16.9		
102	*	10.7	15.9		
103	*	10.7	16.9		
104	*	10.7	15.9		
105	From the confluence of Matawan Creek	10.7	15.9		
106	with Raritan Bay (Keyport Harbor) From Woodmere Road, extended, to South Concourse Drive, extended	10.7	15.9		
107	From South Concourse Drive, extended, to Woodlane Drive, extended	10.7	16.9		
108	From Woodlane Drive, extended, to Lakeshore Drive, extended	10.7	16.9		
109	From Lakeshore Drive, extended, to the confluence of Whale Creek with Raritan	10.7	15.9		
110	Bay (Keyport Harbor) From the confluence of Whale Creek with Raritan Bay (Keyport Harbor) to the northern corporate limits of the Township of Aberdeen	10.8	16.9		

¹ Because of map scale limitations, the maximum wave elevation may not be shown on the FIRM *Data not available

Each transect was taken perpendicular to the shoreline and extended inland to a point where the wave action ceased. Along each transect, wave heights and elevations were computed considering the combined effects of changes in ground elevation, vegetation, and physical or cultural features. The stillwater elevations for the 1-annual chance flood were used as starting elevations for these computations. Wave heights were calculated to the nearest 0.1 foot, and wave elevations were determined at whole-foot increments along the transects. The locations of the 3-foot breaking wave for determining the terminus of the V Zone (area with velocity wave actions) was also computed at each transect. The results of this analysis are summarized in Table 11, "Transect Data."

TABLE 11 – TRANSECT DATA

					BAS	E FLOOD
	STIL	LWATER ELE	VATION (feet N	(AVD)	ELE	EVATION
FLOODING SOURCE	10-PERCENT	2-PERCENT	<u>1-PERCENT</u>	0.2-PERCENT	ZONE	(feet NAVD)
ATLANTIC OCEAN						
Transect 8	5.5	6.7	7.3	8.9	AE	7-10
					VE	10-12
Transects 9-14	5.5	6.7	7.4	8.9	AE	7-10
					VE	10-12
Transects 15-21	5.5	6.8	7.4	9.0	AE	7-10
					VE	10-12
Transects 24-26	5.5	6.7	7.4	9.0	AE	7-10
					VE	10-12
Transects 27-32	5.5	6.8	7.4	9.0	AE	7-10
					VE	10-12
Transects 33-35	5.5	6.9	7.5	9.1	AE	8-11
					VE	11-12
Transect 36	5.6	6.9	7.6	9.2	AE	8-11
					VE	11-12
Transect 37	5.6	7.0	7.6	9.3	AE	8-11
					VE	11-12
Transect 38	5.6	7.1	7.6	9.4	AE	8-11
					VE	11-12
Transect 39	5.7	7.1	7.7	9.5	AE	8-11
					VE	11-13
Transect 40-41	6.0	7.8	9.0	13.6	AE	9-12
					VE	12-15
Transect 43	5.8	7.1	7.8	9.6	AE	8-11
					VE	11-13
Transect 44	5.9	7.2	7.8	9.8	AE	8-11
					VE	11-13
Transect 54	5.0	7.0	8.0	12.6	AE	8-11
					VE	11-12
Transect 63	59	73	79	9.9	AE	8-11
Transoct 05	5.5	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.15	<i></i>	VE	11-13
GLIMMER GLASS					. 2	
Transports 6 7	5 5	67	73	8.8	ΔF	7_0
Tailscus 0-7	5.5	0.7	1.5	0.0		1-7

TABLE 11 - TRANSECT DATA - continued

					BAS	SE FLOOD
	<u>STII</u>	<u>LWATER ELE</u>	VATION (feet N	(AVD)	ELI	EVATION
FLOODING SOURCE	10-PERCENT	2-PERCENT	<u>1-PERCENT</u>	0.2-PERCENT	ZONE	(feet NAVD)
MANASQUAN RIVER						
Transects 1-5	5.5	6.7	7.3	8.8	AE	7-9
NAVESINK RIVER						
Transects 55-56	5.9	7.3	8.1	10.4	AE	8-11
Transects 57-58	5.9	7.3	8.1	10.4	AE	8-10
Transects 59-62	5.9	7.3	8.1	10.4	AE	8-11
RARITAN BAY						
Transects 75-83	6.1	9.0	10.5	12.9	AE	11-14
					VE	14-17
Transects 84-89	6.1	9.1	10.5	13.4	AE	11-14
					VE	14-17
Transects 90-102	6.3	9.5	10.7	13.8	AE	11-14
	• • •				VE	14-17
Transects 103-106	6.3	9.5	10.7	13.8	AE	11-14
		2.12			VE	14-16
Transects 107-108	6.3	9.5	10.7	13.8	AE	11-14
1101100000 101 100	010	310	1011	2010	VE	14-17
Transect 109	63	95	10.7	13.8	AE	11-14
	0.0	5.0	10.7	10.0	VE	14-16
Transect 110	63	95	10.7	13.8	AE	11-14
Transoct TTo	0.5	5.5	10.7	10.0	VE	14-17
SANDY HOOK BAY						
Transects 65-67	6.3	8.8	9.7	11.8	AE	10-13
					VE	13-16
Transects 68-73	6.1	9.0	10.5	12.9	AE	11-14
				-=	VE	14-16
Transect 74	6.1	9.0	10.5	12.9	AE	11-14
					VE	14-17
SHARK RIVER						
Transects 22-23	5.5	6.8	7.4	9.0	AE	7-9

TABLE 11 - TRANSECT DATA - continued

	<u>STII</u>	LWATER ELE	VATION (feet N	AVD)	BAS ELI	<u>SE FLOOD</u> EVATION
FLOODING SOURCE	10-PERCENT	2-PERCENT	1-PERCENT	0.2-PERCENT	ZONE	(feet NAVD)
SHREWSBURY						
RIVER						
Transects 45-47	5.0	6.8	8.0	12.7	AE	8-11
Transect 48	5.0	6.8	8.0	12.7	AE	8-10
Transects 49-53	5.0	7.0	8.0	12.6	AE	8-11
Transect 64	5.9	7.3	8.1	12.6	AE	8-11
SOUTH SHREWSBURY				•		
RIVER						
Transect 42	5.0	7.3	8.0	12.6	AE	8-11

Figure 3 is a profile for a typical transect illustrating the effects of energy dissipation and regeneration on a wave as it moves inland. This figure shows the wave elevations being decrease by obstructions, such as buildings, vegetation and rising ground elevations, and being increased by open, unobstructed wind fetches. Actual wave conditions in the County may not include all situations illustrated in Figure 3.

TRANSECT SCHEMATIC

Figure 3

3.5 Vertical Datum

All FISs and FIRMs are referenced to a specific vertical datum. The vertical datum provides a starting point against which flood, ground, and structure elevations can be referenced and compared. Until recently, the standard vertical datum in use for newly created or revised FISs and FIRMs was the National Geodetic Vertical Datum of 1929 (NGVD 29). With the finalization of the North American Vertical Datum of 1988 (NAVD 88), many FIS reports and FIRMs are being prepared using NAVD 88 as the referenced vertical datum.

All flood elevations shown in this FIS report and on the FIRM are referenced to NAVD 88. Structure and ground elevations in the community must, therefore, be referenced to NAVD 88. It is important to note that adjacent communities may be referenced to NGVD 29. This may result in differences in base flood elevations across the corporate limits between the communities.

Prior versions of the FIS report and FIRM were referenced to NGVD 29. When a datum conversion is effected for an FIS report and FIRM, the Flood Profiles, base flood elevations (BFEs) and ERMs reflect the new datum values. To compare structure and ground elevations to 1-percent annual chance flood elevations shown in the FIS and on the FIRM, the subject structure and ground elevations must be referenced to the new datum values.

As noted above, the elevations shown in the FIS report and on the FIRM for Monmouth County are referenced to NAVD 88. Ground, structure, and flood elevations may be compared and/or referenced to NGVD 29 by applying a standard conversion factor. The conversion factor to NGVD 29 is +1.1. The conversion between the datums may be expressed as an equation:

The BFEs shown on the FIRM represent whole-foot rounded values. For example, a BFE of 102.4 will appear as 102 on the FIRM and 102.6 will appear as 103. Therefore, users that wish to convert the elevations in this FIS to NGVD 29 should apply the stated conversion factor(s) to elevations shown on the Flood Profiles and supporting data tables in the FIS report, which are shown at a minimum to the nearest 0.1 foot.

For more information on NAVD 88, see <u>Converting the National Flood Insurance</u> <u>Program to the North American Vertical Datum of 1988</u>, FEMA Publication FIA-20/June 1992, or contact the Spatial Reference System Division, National Geodetic Survey, NOAA, Silver Spring Metro Center, 1315 East-West Highway, Silver Spring, Maryland 20910 (Internet address http://www.ngs.noaa.gov).

4.0 FLOODPLAIN MANAGEMENT APPLICATIONS

The NFIP encourages State and local governments to adopt sound floodplain management programs. To assist in this endeavor, each FIS provides 1-percent annual chance floodplain data, which may include a combination of the following: 10-, 2-, 1-, and 0.2-percent annual chance flood elevations; delineations of the 1- and 0.2-percent annual chance floodplains; and 1-percent annual chance floodway. This information is presented on the FIRM and in many components of the FIS, including Flood Profiles, Floodway Data tables, and Summary of Stillwater Elevation tables. Users should reference the data presented in the FIS as well as additional information that may be available at the local community map repository before making flood elevation and/or floodplain boundary determinations.

4.1 Floodplain Boundaries

To provide a national standard without regional discrimination, the 1-percent annual chance flood has been adopted by FEMA as the base flood for floodplain management purposes. The 0.2-percent annual chance flood is employed to indicate additional areas of flood risk in the county. For the streams studied in detail, the 1- and 0.2-percent annual chance floodplain boundaries have been delineated using the flood elevations determined at each cross section.

Floodplain delineation was based on topographic data provided by Monmouth County. This data were derived from April 2003 aerial photogrammetry.

Similarly, using datum-converted effective flood profiles for non-revised, detailed streams, all flood boundaries were made current with the topography supplied by Monmouth County.

In the Township of Aberdeen, aerial photographs at a scale of 1:9,600 and 1:12,000 were used to delineate floodplain boundaries between cross sections, as well as topographic maps at a scale of 1"=400' with a 4-foot contour interval. Information was supplemented by 7.5-Minute Series Topographic Maps at a scale of 1:24,000 and contour interval of 20 feet.

In the Borough of Allenhurst, aerial contour maps at a scale of 1"=500' and a 2-foot contour interval were used to delineate floodplain boundaries between cross sections, as well as 7.5-Minute Series Topographic Maps at a scale of 1:24,000 and contour interval of 20 feet.

In the Borough of Allentown, aerial photographs and topographic maps at a scale of 1:2,400 and 5-foot contour interval were used to delineate floodplain boundaries between cross sections, as well as 7.5-Minute Series Topographic Maps at a scale of 1:24,000 and 10-foot contour interval.

In the City of Asbury Park, floodplain boundaries between cross sections were interpolated using aerial contour maps at a scale of 1:6,000 with a 2-foot contour interval, as well as 7.5-Minutes Series Topographic Maps at a scale of 1:24,000 and a 20-foot contour interval.

In the Borough of Avon-by-the-Sea, aerial photographs and topographic maps at a scale of 1:6,000 and contour interval of 2 feet were used to delineate floodplain boundaries between cross sections, as well as 7.5-Minute Series topographic maps at a scale of 1:24,000 and contour interval of 20 feet.

In the Borough of Belmar, floodplain boundaries between cross sections were interpolated using aerial photographs at a scale of 1:12,000, topographic maps at a scale of 1:2,400 with a 4-foot contour interval, as well as 7.5-Minute Series topographic maps at a scale of 1:24,000 and a 20-foot contour interval.

In the Borough of Bradley Beach, floodplain boundaries between cross sections were interpolated using aerial photographs and topographic maps at a scale of 1:6,000 with a 2-foot contour interval, and 7.5-Minute Series topographic maps at a scale of 1:24,000 with a 20-foot contour interval.

In the Borough of Brielle, aerial contour maps of a 1:6,000 scale and 2-foot contour interval were used to delineate floodplain boundaries between cross sections, as well as aerial contour maps of a 1:2,400 scale with a 5-foot contour interval. Additionally, 7.5-Minute Series topographic maps were used, with a scale of 1:24,000 and 20-foot contour interval.

In the Township of Colts Neck, floodplain boundaries between cross sections were interpolated using topographic maps of 1:2,400 scale with a 5-foot contour interval.

In the Borough of Deal, aerial photographs and aerial plotting plates at a scale of 1:12,000 were used to delineate floodplain boundaries between cross sections, as well as topographic maps at scales of 1:24,000 and 1:2,400 with contour intervals of 4 feet. Additionally, 7.5-Minute Series topographic maps at a scale of 1:24,000 with a 20-foot contour interval were used.

In the Borough of Eatontown, topographic maps of Northeast Monmouth County, at a scale of 1:1,200 and a one-foot contour interval, were used to delineate floodplain boundaries between cross sections, as well as 7.5-Minute Series topographic maps at a scale of 1:24,000 and a 20-foot contour interval.

In the Borough of Englishtown, topographic maps sheets at a scale of 1"=200' and a contour interval of 5 feet were used to delineate floodplain boundaries between cross sections, as well as 7.5-Minute Series topographic maps at a scale of 1:24,000 and a 20-foot contour interval.

In the Borough of Fair Haven, floodplain boundaries between cross sections were interpolated using topographic maps of Northeast Monmouth County, at a scale of 1:1,200 and a one-foot contour interval.

In the Township of Freehold, topographic maps at a scale of 1:2,400 with a 5-foot contour interval were used to delineate floodplain boundaries between cross sections, as well as 7.5-Minute Series topographic maps and flood-prone area maps at a scale of 1:24,000 and a 10-foot contour interval.

In the Township of Hazlet, topographic maps at a scale of 1:1,200 and a 2-foot contour interval were used to delineate floodplain boundaries between cross sections.

In the Borough of Highlands, topographic maps at a scale of 1"=200' with a contour interval of 2 feet were used to delineate floodplain boundaries between cross sections.

In the Township of Holmdel, topographic maps at a scale of 1:24,000 with a 5foot contour interval were used to delineate floodplain boundaries between cross sections.

In the Township of Howell, topographic maps at a scale of 1:2,400 with a 5-foot contour interval were used to delineate floodplain boundaries between cross sections.

In the Borough of Keansburg, topographic maps of scales 1" = 500 with a contour interval of 2 feet and 1:600 with a one-foot contour interval were used to delineate floodplain boundaries between cross sections, as well as 7.5-Minute Series topographic maps at a scale of 1:24,000 with a 20-foot contour interval.

In the Borough of Keyport, aerial contour maps at a scale of 1:6,000 with a 2-foot contour interval were used to delineate floodplain boundaries between cross sections, as well as 7.5-Minute topographic maps at a scale of 1:24,000 with a 20-foot contour interval.

In the Borough of Little Silver, aerial photographs with a scale of 1:12,000 were used to delineate floodplain boundaries between cross sections, as well as topographic maps at a scale of 1:1,200 with a one-foot contour interval and 7.5-Minute Series topographic maps at a scale of 1:24,000 with a 20-foot contour interval.

In the Village of Loch Arbour, aerial contour maps at a scale of 1:6,000 with a 2foot contour interval were used to delineate floodplain boundaries between cross sections, as well as 7.5-Minute Series topographic maps at a scale of 1:24,000 with a 20-foot contour interval.

In the City of Long Branch, aerial photographs and aerial plotting plates at a scale of 1:12,000 were used to delineate floodplain boundaries between cross sections, as well as topographic maps at a scale of 1:2,400 with a 4-foot contour interval and 7.5-Minute Series topographic maps at a scale of 1:24,000 with a 20-foot contour interval.

In the Township of Manalapan, 7.5-Minute Series topographic maps at a scale of 1:24,000 with contour intervals of 10 feet and 5 feet were used to delineate floodplain boundaries between cross sections.

In the Borough of Manasquan, aerial photographs and aerial plotting plates at a scale of 1:12,000 were used to delineate floodplain boundaries between cross sections, as well as topographic maps at a scale of 1:2,400 with a 4-foot contour interval and 7.5-Minute Series topographic maps at a scale of 1:24,000 with a 20-foot contour interval.

In the Township of Marlboro, topographic maps at a scale of 1:2,400 with a 5-foot contour interval were used to delineate floodplain boundaries between cross sections, as well as 7.5-Minute Series topographic maps at a scale of 1:24,000 with contour intervals of 10 feet and 20 feet.

In the Borough of Matawan, floodplain boundaries were interpolated between cross sections using topographic maps at a scale of 1:2,400 with a 5-foot contour interval.

In the Township of Middletown, floodplain boundaries were interpolated between cross sections using topographic maps at a scale of 1"=100' with a one-foot contour interval, as well as 7.5-Minute Series topographic maps at a scale of 1:24,000 with contour intervals of 10 feet and 20 feet.

In the Township of Millstone, aerial photographs and photogrammetric mapping at a scale of 1:2,400 with a 5-foot contour interval were used to delineate floodplain boundaries between cross sections, as well as 7.5-Minute Series topographic maps at a scale of 1:24,000 with contour intervals of 5 feet and 10 feet.

In the Borough of Monmouth Beach, aerial photographs at a scale of 1:12,000 were used to delineate floodplain boundaries between cross sections, as well as topographic maps at a scale of 1:1,200 with a one-foot contour interval and 7.5-Minute Series topographic maps at a scale of 1:24,000 with a 20-foot contour interval.

In the Township of Neptune, aerial photographs and aerial plotting plates at a scale of 1:12,000 were used to delineate floodplain boundaries between cross sections, as well as topographic maps at a scale of 1:2,400 with a 4-foot contour interval and 7.5-Minute Series topographic maps at a scale of 1:24,000 with a 20-foot contour interval.

In the Township of Ocean, topographic maps at scales of 1:1,200 with a 2-foot contour interval and 1:24,000 with a 4-foot contour interval were used to delineate floodplain boundaries between cross sections.

In the Borough of Oceanport, floodplain boundaries between cross sections were interpolated using topographic maps at a scale of 1"=100' with a one-foot contour interval.

In the Borough of Red Bank, floodplain boundaries between cross sections were interpolated using topographic maps at a scale of 1:1,200 with a 2-foot contour interval.

In the Borough of Rumson, aerial photographs at a scale of 1:12,000 were used to delineate floodplain boundaries between cross sections, as well as topographic maps at a scale of 1:1,200 with a one-foot contour interval and 7.5-Minute Series topographic maps at a scale of 1:24,000 with a 20-foot contour interval.

In the Borough of Sea Bright, aerial photographs and aerial plotting plates at a scale of 1:12,000 were used to delineate floodplain boundaries between cross sections, as well as topographic maps at a scale of 1:2,400 with a 4-foot contour interval and 7.5-Minute Series topographic maps at a scale of 1:24,000 with a 20-foot contour interval.

In the Borough of Sea Girt, aerial photographs and aerial plotting plates at a scale of 1:12,000 were used to delineate floodplain boundaries between cross sections, as well as topographic maps at a scale of 1:2,400 with a 4-foot contour interval and 7.5-Minute Series topographic maps at a scale of 1:24,000 with a 20-foot contour interval.

In the Borough of Shrewsbury, floodplain boundaries between cross sections were interpolated using topographic maps at a scale of 1:1,200 with a one-foot contour interval.

In the Borough of Spring Lake, aerial photographs and aerial plotting plates at a scale of 1:12,000 were used to delineate floodplain boundaries between cross sections, as well as topographic maps at a scale of 1:2,400 with a 4-foot contour interval and 7.5-Minute Series topographic maps at a scale of 1:24,000 with a 20-foot contour interval.

In the Borough of Spring Lake Heights, floodplain boundaries between cross sections were interpolated using topographic maps at a scale of 1:2,400 with a contour interval of 5 feet, as well as 7.5-Minute Series flood-prone area maps at a scale of 1:24,000 with a 20-foot contour interval.

In the Borough of Tinton Falls, floodplain boundaries between cross sections were interpolated using topographic maps at a scale of 1:1,200 with a 3-foot contour interval.

In the Borough of Union Beach, floodplain boundaries between cross sections were interpolated using topographic maps at a scale of 1"=50' with a one-foot contour interval and 1:6,000 with a 2-foot contour interval.

In the Township of Wall, floodplain boundaries between cross sections were interpolated using topographic maps at a scale of 1:2,400 with a 2-foot contour interval, as well as the Tax Map for the Township of Wall.

In the Borough of West Long Branch, floodplain boundaries between cross sections were interpolated using topographic maps at a scale of 1:1,200 with a one-foot contour interval as well as 7.5-Minute Series topographic maps at a scale of 1:24,000 with a 20-foot contour interval.

4.2 Floodways

Encroachment on floodplains, such as structures and fill, reduces flood-carrying capacity, increases flood heights and velocities, and increases flood hazards in areas beyond the encroachment itself. One aspect of floodplain management involves balancing the economic gain from floodplain development against the resulting increase in flood hazard. For purposes of the NFIP, a floodway is used as a tool to assist local communities in this aspect of floodplain management. Under this concept, the area of the 1-percent annual chance floodplain is divided into a floodway and a floodway fringe. The floodway is the channel of a stream, plus any adjacent floodplain areas, that must be kept free of encroachment so that the 1-percent annual chance flood can be carried without substantial increases in flood heights. Minimum federal standards limit such increases to 1.0 foot, provided that hazardous velocities are not produced. The floodways in this FIS are presented to local agencies as minimum standards that can be adopted directly or that can be used as a basis for additional floodway studies.

The floodways presented in this FIS were computed for certain stream segments on the basis of equal conveyance reduction from each side of the floodplain.

Floodway widths were computed at cross sections. Between cross sections, the floodway boundaries were interpolated. The results of the floodway computations are tabulated for selected cross sections (Table 12). The computed floodways are shown on the FIRM (Exhibit 2). In cases where the floodway and 1-percent annual chance floodplain boundaries are either close together or collinear, only the floodway boundary is shown.

Near the mouths of streams studied in detail, floodway computations are made without regard to flood elevations on the receiving water body. Therefore, "Without Floodway" elevations presented in Table 12 for certain downstream cross sections of Ardena Brook, Bannen Meadow Brook, Burkes Creek, Claypit Creek, Comptons Creek, Gravelly Run, Groundhog Brook, Haystack Brook, Jumping Brook 1, McClees Creek, Mohingson Brook, Parkers Creek, Parkers Creek North Branch, Pine Brook 1, Poplar Creek Tributary 1, Shark River, Waackaack Creek, Weamaconk Creek Tributary, and Yellow Brook Tributary 2 are lower than the regulatory flood elevations in that area, which must take into account the 1-percent annual chance flooding due to backwater from other sources.

No floodways were calculated for Cranberry Brook or Wells Brook.

Portions of the floodways for Metedeconk River North Branch and Rocky Brook (Downstream Reach) extend beyond the county boundary Encroachment into areas subject to inundation by floodwaters having hazardous velocities aggravates the risk of flood damage, and heightens potential flood hazards by further increasing velocities. A listing of stream velocities at selected cross sections is provided in Table 12, "Floodway Data." In order to reduce the risk of property damage in areas where the stream velocities are high, the community may wish to restrict development in areas outside the floodway.

The area between the floodway and 1-percent annual chance floodplain boundaries is termed the floodway fringe. The floodway fringe encompasses the portion of the floodplain that could be completely obstructed without increasing the water-surface elevation of the 1-percent annual chance flood by more than 1.0 foot at any point. Typical relationships between the floodway and the floodway fringe and their significance to floodplain development are shown in Figure 4.

FLOODING SOU	IRCE		FLOODWA	Y	v	WATER-SURFACE ELEVATION (FEET NAVD)				
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
pplegates Creek		<u> </u>		0200.12/						
A	90 ¹	37	92	5.90	917	91 7	91.9	0.2		
B	1.375 ¹	69	214	2 50	95.5	95.5	95.7	0.2		
Č	2.835 ¹	74	198	2.70	102 7	102.7	102.9	0.2		
D	2,865 ¹	189	669	0.80	103.1	103.1	103.3	0.2		
F	4 030 ¹	31	131	4 10	103.7	103.7	103.8	0.1		
F	4.080 ¹	15	70	7.70	103.7	103.7	103.8	0.1		
G	4 205 ¹	15	85	6.30	104.5	104.5	104.7	0.7		
н	4 255 ¹	59	184	2.90	105.2	105.2	105.3	0.1		
i	5,055 ¹	34	86	6.20	106.2	106.2	106.6	0.1		
	6,000	67	174	3 10	110.0	110.0	110.0	0.0		
ĸ	6,665 ¹	97	282	1.90	114 7	114 7	114 7	0.0		
Ĺ	6,695 ¹	109	247	2.20	114.7	114.7	114.7	0.0		
rdena Brook										
А	280 ²	19	60	6.10	63.4	61.5 ³	61.7	0.2		
В	1,165 ²	19	59	6.30	66.1	66.1	66.3	0.2		
С	1,680 ²	28	62	6.00	70.6	70.6	70.6	0.0		
D	2,274 ²	14	56	6.60	78.8	78.8	78.8	0.0		
E	2,304 ²	35	138	2.70	79.6	79.6	79.6	0.0		
annen Meadow Brook										
А	310 ²	30	100	6.90	69.5	67.5 ³	67.7	0.2		
В	1,028 ²	19	130	5.30	74.3	74.3	74.3	0.0		
С	1,058 ²	69	374	1.80	74.8	74.8	74.8	0.0		
D	$1,960^2$	152	798	0.90	75.0	75.0	75.0	0.0		
E	2,945 ²	86	216	3.20	75.1	75.1	75.1	0.0		
Feet above confluence with De	bois Creek									
Elevation computed without co	nsideration of backv	vater effects f	rom Manasqua	n River						

AL	FEDERAL EMERGENCY MANAGEMENT AGENC
BLE 12	MONMOUTH COUNTY, NJ (ALL JURISDICTIONS)

FLOODWAY DATA

APPLEGATES CREEK – ARDENA BROOK – BANNEN MEADOW BROOK

							BASE F	LOOD	
	FLOODING SOUR	RCE		FLOODWA	Y		VATER-SURFAC (FEET №	CE ELEVATION NAVD)	
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Bai (co	nnen Meadow Brook ontinued)								
	F G H J K L M	3,000 ¹ 3,160 ¹ 3,210 ¹ 4,010 ¹ 4,617 ¹ 5,347 ¹ 5,377 ¹ 6,034 ¹	14 14 53 58 100 79 52 49	59 83 256 155 308 282 109 182	11.70 8.30 2.70 4.40 2.20 2.40 6.30 3.80	75.3 78.0 79.1 80.0 81.4 84.3 84.3 87.5	75.3 78.0 79.1 80.0 81.4 84.3 84.3 87.5	75.3 78.0 79.1 80.1 81.6 84.3 84.3 87.6	0.0 0.0 0.1 0.2 0.0 0.0 0.1
Ba	rclay Brook A B C D E F G H I J	$\begin{array}{c} 211^2 \\ 581^2 \\ 686^2 \\ 1,214^2 \\ 1,320^2 \\ 1,795^2 \\ 3,010^2 \\ 3,590^2 \\ 4,066^2 \\ 4,435^2 \end{array}$	30 70 70 30 45 25 35 35 35 80 15	85 165 330 95 225 45 115 50 160 40	4.60 2.30 1.20 4.10 1.70 8.20 3.30 7.50 2.40 9.20	73.9 75.5 78.4 78.6 82.5 83.5 94.0 99.5 105.9 110.1	73.9 75.5 78.4 78.6 82.5 83.5 94.0 99.5 105.9 110.1	73.9 75.5 78.4 78.8 82.5 83.5 94.0 99.5 106.1 110.1	0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0
Ba	rren Neck Creek A B C D	2,000 ³ 2,700 ³ 3,050 ³ 3,300 ³	102 33 29 30	367 75 64 285	1.40 6.70 7.90 1.80	44.4 46.6 50.0 59.5	44.4 46.6 50.0 59.5	44.4 46.6 50.0 59.5	0.0 0.0 0.0 0.0
² Fe ³ Fe TAE	eet above confluence with Man eet above county boundary eet above mouth FEDERAL EMERGEN	asquan River	TAGENCY			FLOOI	DWAY DA	TA	
3LE 12	MONMOUT (ALL JUR	H COUNT SISDICTIO	Y, NJ NS)		BANNEN	MEADOW BI BARREN	ROOK – BA I NECK CR	ARCLAY BR EEK	ROOK –

FLOODING SOUR	CE		FLOODWA	Y	v	BASE F VATER-SURFAC (FEFT N	LOOD CE ELEVATION	
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Barren Neck Creek (continued)			//_//					
E	3.950 ¹	36	235	2.10	59.5	59.5	59.7	0.2
F	4.200 ¹	55	412	1.20	61.8	61.8	61.8	0.0
G	4,600 ¹	119	595	0.80	61.9	61.9	62.0	0.1
Betty Brook								
Α	01	289	498	1.00	54.8	54.8	55.0	0.2
B	600 ¹	50	74	7.00	61.0	61 1	61.1	0.2
c	1100^{1}	40	71	7.00	66.5	66.5	66.6	0.0
D	1,100 1,900 ¹	30	76	6.80	72 1	72 1	72.3	0.1
F	2.340^{1}	26	70	7.30	74.5	74.5	74.6	0.2
-	_,010	20		1.00	0.110	14.0	14.0	0.1
Big Brook (Downstream Reach)								
A	740 ²	171	532	3.00	38.5	38.5	38.7	0.2
В	1.700^{2}	187	473	3.30	39.9	39.9	40.1	0.2
Ē	2770^{2}	252	786	2 00	41.5	41.5	41.7	0.2
D	3.000^2	250	629	2.50	42.3	42.3	42.3	0.2
F	4.500^{2}	296	484	3.20	45.1	45.1	45.3	0.0
F	5.330^2	475	877	1.80	47.5	47.5	47.6	0.2
G	6.830^2	267	484	3.20	50.1	50.1	50.3	0.7
Ĥ	7.880^2	220	890	1.80	53.9	53.9	54.0	0.2
	8.400^2	203	773	2.00	54.1	54.1	54.3	0.1
J	9.000^2	71	273	5 70	54.6	54.6	54.8	0.2
K	10,220 ²	161	633	2.50	57.4	57.4	57.6	0.2
Big Brook (Linstream Boach)								
	0 ³	00	275	2 10	79.5	79.5	70 7	0.2
B	159 ³	90	400	2.10	70.0	70.0	70.7	0.2
C	2 2 1 0 0	90	245	2.80	10.0	017	79.0	0.2
	2,210		240	3.30	01./	00.7	81.9	0.2

¹Feet above mouth ²Feet above confluence with Swimming River Reservoir ³Feet above limit of detailed study (limit of detailed study is approximately 50 feet below Boundary Road)

TABL	FEDERAL EMERGENCY MANAGEMENT AGENCY	FLOODWAY DATA
E 12	(ALL JURISDICTIONS)	BARREN NECK CREEK – BETTY BROOK – BIG BROOK (UPSTREAM REACH) – BIG BROOK (DOWNSTREAM REACH)

	FLOODING SOUR	RCE		FLOODWA	Y	V	BASE F		
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Big	Brook (Upstream Reach)								
	E F G H	5,861 ¹ 5,966 ¹ 7,075 ¹ 7,181 ¹ 9,504 ¹	40 35 30 35 50	165 175 105 145	4.20 4.00 6.70 4.80 3.90	93.3 93.9 97.2 98.4 104.3	93.3 93.9 97.2 98.4	93.3 93.9 97.2 98.5 104.3	0.0 0.0 0.0 0.1
	J	11,405 ¹	20	55	8.80	116.2	116.2	116.3	0.1
Big	Brook Tributary H A B C D	211 ² 2,482 ² 2,587 ² 5,702 ²	40 70 70 25	180 135 430 30	3.00 2.90 0.90 3.10	79.2 90.1 94.5 119.8	79.2 90.1 94.5 119.8	79.4 90.2 94.5 120.0	0.2 0.1 0.0 0.2
Bur	kes Creek								
¹ Fea ² Fea ³ Fea ⁴ Ele	A B C D E F G H I J K L M M et above limit of detailed study et above confluence with Big f et above confluence with Deb	370 ³ 590 ³ 620 ³ 720 ³ 1,300 ³ 1,800 ³ 1,830 ³ 2,180 ³ 2,695 ³ 2,725 ³ 3,110 ³ 3,610 ³ / (limit of detailed s Brook ois Creek sideration of backy	53 12 55 125 185 143 24 195 156 172 110 25 121 study is appro	161 50 134 158 1,444 911 158 1,517 1,108 573 456 86 250 ximately 50 fee	2.40 7.80 2.90 2.50 0.30 0.40 2.50 0.30 0.40 0.70 0.90 4.50 1.50 et below Boundar	90.2 90.3 90.3 94.2 94.3 99.1 99.3 99.3 99.3 99.5 99.5 99.5 99.6 100.4 y Road)	89.3 ⁴ 89.3 ⁴ 90.2 ⁴ 94.2 94.3 94.3 99.1 99.3 99.3 99.5 99.5 99.6 100.4	89.5 89.5 90.3 94.3 94.4 99.2 99.4 99.4 99.6 99.6 99.6 99.7 100.6	0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2
TABLE	FEDERAL EMERGENO	CY MANAGEMEN	it agency Y, NJ			FLOO	OWAY DA	ТА	
12	(ALL JUR	ISDICTIO	NS)		BIG BIG BR	BROOK (DO OOK TRIBUT	WNSTREA FARY H – E	M REACH) BURKES CF	- REEK

									,
	FLOODING SOUR	≷CE		FLOODWA	Y	Ŵ	BASE FI ATER-SURFAC/ FEET N	LOOD XE ELEVATION IAVD)	
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Cla	ypit Creek				((A		
	A		*	2,419	0.30	8.1	4.0 ⁴	4.2	0.2
	В	1,200'	220	691	0.90	8.1	4.1	4.3	0.2
	C	1,900	250	390	1.60	8.1	4.8	4.9	0.1
	D L	2,020	214	631	1.00	10.6	10.6	10.6	0.0
	E	2,450	*	/81	0.50	10.8	10.8	10.8	0.0
Cor	nptons Creek								
	A	115 ²	359	1,209	1.10	10.5	5.9 ⁵	6.0	0.1
	B	622 ²	554	1,713	0.80	10.5	6.1 ⁵	6.3	0.2
	С	1.430 ²	34	262	5.10	10.5	7.0 ⁵	7.2	0.2
	D	3.850 ²	253	681	1.90	10.5	7.9 ⁵	8.1	0.2
	E	5.235 ²	185	570	1.60	12.3	12.3	12.4	0.1
	F	5,615 ²	124	446	2.00	13.1	13.1	13.1	0.0
0	nherry Brook								
Ulc		640 ³	*	*	*	14.0	*	*	*
	R	2 220 ³	*	*	*	16.5	*	*	*
		2,200	*	 *	*	10.0	*	*	*
		2,490	*	*	*	19.0	*	*	*
		3,010 2,060 ³	*	*	*	19.0	*	*	*
		3,900	*	*	*	10.6	*	*	*
	G	4,340 5.295 ³	*	*	*	19.6	*	*	*
_		,]					
De	ai Iributary 1	2203	10	00	0.50	10 5	10.5	10.5	0.0
	A	200	12	00	0.50	10.5	10.0	10.0	0.0
		350°	10	04	0.00	10.0	10.0	10.0	0.0
		030	39	200	0.20	10.7	10.7	10.0	0.1
Fe	et above Locust Avenue Bridg	je (upstream face)	4	⁵Elevati	ion computed wit	hout consideration of	f backwater effects	s from Raritan Bay	·
² Fe	et above Campbell Avenue			*Data n	ot available				
r€ ⁴Ele	ecapove mouth evation computed without cons	sideration of backw	vater effects f	rom Navesink F	River				
, 1	FEDERAL EMERGEN		TAGENCY						
5								Тл	
				1		FLUUL	JWAT DA	IA	
Ĩ	MONMOUT	H COUNT	Y, NJ						
Π	(ALL JUR	ISDICTIO	NS)				- COMPTO	NS CREEK	[
3									、 >V 1
-					URANI	JERKI BRU	UN - UEAL		

FLOODING SOUR	RCE		FLOODWA	Y	V	BASE FI ATER-SURFAC/ FEET N	LOOD CE ELEVATION NAVD)			
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
eal Tributary 1					· · · · · · · · · · · · · · · · · · ·					
continued)	1									
D	1,060	20	12	3.30	10.7	10.7	10.7	0.0		
E	1,560	35	97	0.40	19.8	19.8	19.8	0.0		
F	1,940	11	17	2.40	19.8	19.8	19.8	0.0		
G	1,975 ¹	13	13	3.10	19.9	19.9	19.9	0.0		
eal Tributary 2										
A	01	54	450	0.40	10.5	10.5	10.5	0.0		
B	1371	177	1 082	0.10	14.8	14.8	14.8	0.0		
C	1 2001	157	768	0.20	18.3	18.3	18.5	0.0		
	2,450 ¹	157	100	5.20	25.1	25.1	25.2	0.2		
D	2,400	0	10	0.70	20.1	25.1	25.2	0.1		
E	2,520	4	10	8.70	20.0	20.0	20.7	0.2		
F	2,990	4	14	6.20	31.0	31.0	31.0	0.0		
Deal Tributary 3										
A	310 ¹	142	968	0.40	13.7	13.7	13.7	0.0		
В	2,650 ¹	98	208	0.60	18.2	18.2	18.2	0.0		
С	3.820 ¹	49	65	1.30	28.1	28.1	28.1	0.0		
D	4.525 ¹	75	120	0.70	33.7	33.7	33.8	0.1		
F	5 2951	4	4	6 50	43.1	43.1	43.1	0.0		
F	5.345 ¹	13	6	4.30	44.2	44.2	44.2	0.0		
·	-,		_							
Deal Tributary 3A	4702	00	24	0.00	40.0	10.0	10.4	0.0		
A	4/0	20	31	0.80	18.2	18.2	18.4	0.2		
В	595	41	119	0.40	26.2	26.2	26.2	0.0		
C	9402	23	49	0.90	26.2	26.2	26.2	0.0		
D	985 ²	28	89	0.50	26.2	26.2	26.2	0.0		
Feet above mouth	1	I		1	1	1	l	l		
Feet above confluence with Dea	I Tributary 3									
FEDERAL EMERGEN		IT AGENCY								
							ТΔ			
				FLOODWAY DATA						

MONMOUTH COUNTY, NJ (ALL JURISDICTIONS)

12

DEAL TRIBUTARY 1 – DEAL TRIBUTARY 2 – **DEAL TRIBUTARY 3 – DEAL TRIBUTARY 3A**

FLOODING SOUF	RCE		FLOODWA	Y	V	BASE F VATER-SURFAC (FEET N	LOOD CE ELEVATION NAVD)		
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Deal Tributary 4 A B C D E F Deal Tributary 4A	15 ¹ 500 ¹ 1,000 ¹ 1,680 ¹ 1,900 ¹ 4,000 ¹	144 78 84 24 62 8	693 335 295 49 97 38	0.00 0.10 0.10 5.30 2.70 6.40	13.7 13.7 13.7 15.2 16.6 26.8	13.7 13.7 13.7 15.2 16.6 26.8	13.9 13.9 13.9 15.4 16.6 26.9	0.2 0.2 0.2 0.2 0.0 0.1	
A B C	645 ² 730 ² 845 ²	9 53 53	9 57 57	5.60 0.90 0.90	16.7 17.5 17.5	16.7 17.5 17.5	16.7 17.7 17.7	0.0 0.2 0.2	
Debois Creek A B C D E F G H I J K L M N	$\begin{array}{c} 80^3 \\ 1,045^3 \\ 1,075^3 \\ 1,890^3 \\ 2,670^3 \\ 3,620^3 \\ 4,685^3 \\ 4,735^3 \\ 4,925^3 \\ 4,975^3 \\ 6,035^3 \\ 6,065^3 \\ 6,975^3 \\ 7,890^3 \end{array}$	330 30 107 163 210 96 55 31 31 31 78 28 24 24 210 68	973 182 354 425 480 229 278 190 244 412 193 130 480 234	$ \begin{array}{r} 1.10\\ 6.10\\ 3.10\\ 2.60\\ 2.30\\ 4.80\\ 4.00\\ 5.80\\ 4.60\\ 2.70\\ 5.80\\ 8.50\\ 2.30\\ 4.70\\ \end{array} $	76.5 77.0 77.6 78.9 80.3 83.4 86.2 86.2 87.8 88.1 88.3 88.3 90.0 91.0	76.5 77.0 77.6 78.9 80.3 83.4 86.2 86.2 86.2 87.8 88.1 88.3 90.0 91.0	76.7 77.2 77.6 79.1 80.5 83.5 86.3 86.3 86.3 87.9 88.2 88.4 88.4 90.2 91.1	$\begin{array}{c} 0.2 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.2 \\ 0.1 \\$	
¹ Feet above confluence with Dea ² Feet above confluence with Dea ³ Feet above confluence with Mar FEDERAL EMERGEN	I Tributary 3 I Tributary 4 Iasquan River	T AGENCY							
	MONMOUTH COUNTY, NJ (ALL JURISDICTIONS)			DEAL T	FLOOI	DWAY DA	TA RIBUTARY	4A –	
S					DEB		Κ		
	CROSS SECTION	DISTANCE ¹	WIDTH	SECTION	MEAN VELOCITY	REGULATORY	WITHOUT	WITH	INCREASE
-----	------------------------------	-----------------------	----------	------------------	----------------------	------------	----------	------------	----------
		DISTANCE	(FEET)	(SQUARE FEET)	(FEET PER SECOND)	REGULATORT	FLOODWAY	FLOODWAY	INCREASE
Deb	oois Creek htinued)								
	Ó	8,870	29	122	7.60	93.1	93.1	93.3	0.2
	Р	9,600	29	105	8.80	96.0	96.0	96.0	0.0
	Q	10,525	72	269	3.40	101.3	101.3	101.5	0.2
	R	10,555	64	241	3.80	101.4	101.4	101.6	0.2
ĺ	S	11,640	46	145	6.30	104.9	104.9	105.0	0.1
	Т	12,520	50	273	3.40	107.2	107.2	107.4	0.2
	U	13,270	28	118	7.80	108.2	108.2	108.4	0.2
	V	14,210	26	155	5.90	114.2	114.2	114.2	0.0
	W	14,240	111	580	1.60	115.0	115.0	115.0	0.0
	X	14,980	20	122	25.80	115.2	115.2	115.3	0.1
	Y	15,865	17	92	3.80	115.6	115.6	115.8	0.2
	Z	16,905	41	167	2.10	119.7	119.7	119.7	0.0
	AA	17,008	8	56	6.20	119.9	119.9	120.0	0.1
	AB	17,038	32	114	3.10	120.5	120.5	120.5	0.0
	AC	17,545	12	81	4.30	120.7	120.7	120.8	0.1
]	AD	17,595	45	160	2.20	121.0	121.0	121.1	0.1
	AE	18,235	14	48	7.20	121.0	121.0	121.2	0.2
	AF	18,595	24	84	4.10	123.6	123.6	123.8	0.2
	AG	19,635	33	89	3.90	125.3	125.3	125.3	0.0
	AH	20,195	10	41	8.50	128.1	128.1	128.1	0.0
	Al	20,530	36	88	4.00	130.2	130.2	130.3	0.1
	AJ	21,240	246	325	1.10	136.8	136.8	136.8	0.0
	AK	21,270	304	1,189	0.30	136.9	136.9	136.9	0.0
1-									
'⊢e	et above confluence with Man	asquan River							
	FEDERAL EMERGEN	CY MANAGEMEN	T AGENCY						
>								T A	
ωI						FLOOL	JWAY DA	IA	
~ I	MONMOUT	H COUNT	Y. N.I	1					
in	(ALL JUR	ISDICTIO	NS)						
12	(-		- /			DEBC	DIS CREE	K	

FLOODING SOU	IRCE		FLOODWA	Y	v	BASE F VATER-SURFAC (FEET N	LOOD CE ELEVATION NAVD)			
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
Debois Creek Tributary A B C D	500 ¹ 950 ¹ 1,750 ¹ 2,660 ¹	39 61 27 12	103 179 86 52	4.40 2.50 5.30 8.70	95.0 96.3 101.6 106.6	95.0 96.3 101.6 106.6	95.2 96.5 101.6 106.6	0.2 0.2 0.0 0.0		
Deep Run A B C D E F G H I J D eep Run Tributary A	53 ² 2,851 ² 2,957 ² 6,125 ² 9,029 ² 9,134 ² 10,296 ² 10,982 ² 11,088 ² 13,781 ²	309 412 506 315 280 350 355 220 265 160	2,628 2,629 20.8 2,038 735 1,050 1,340 300 520 245	1.00 1.00 1.00 2.80 1.90 1.10 4.70 1.10 2.30	53.7 60.1 61.2 63.8 76.8 77.4 78.3 82.5 85.5 101.3	53.7 60.1 61.2 63.8 76.8 77.4 78.3 82.5 85.5 101.3	53.9 60.1 61.2 63.8 77.0 77.5 78.5 82.5 85.5 101.3	0.2 0.0 0.0 0.2 0.1 0.2 0.0 0.0 0.0		
A B C	1,373 ³ 3,062 ³ 4,752 ³	140 190 50	180 300 55	3.40 1.60 6.40	89.8 93.4 104.1	89.8 93.4 104.1	89.8 93.4 104.1	0.0 0.0 0.0		
eep Run Tributary B A B C Feet above confluence with De	1,690 ³ 3,115 ³ 3,221 ³ bois Creek	390 180 225	685 270 490	1.40 3.20 1.70	71.4 81.0 82.6	71.4 81.0 82.6	71.5 81.1 82.7	0.1 0.1 0.1		
Feet above county boundary Feet above confluence with De	ep Run									
FEDERAL EMERGEN	FEDERAL EMERGENCY MANAGEMENT AGENCY				FLOOD	WAY DA	ТА			
(ALL JUF	(ALL JURISDICTION) DEBOIS CREEK TRIBUTARY – DEEP RUN – DEEP RUN TRIBUTARY A DEEP RUN TRIBUTARY R						

FLOODING SOL	IRCE		FLOODWA	Y	v	BASE F VATER-SURFAC					
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE			
Deep Run Tributary B											
	4.0121	250	700	1 20	82.0	00.0					
E	4,013	250	205	1.20	03.0	83.0	83.2	0.2			
E E	4,094	200	303	1.20	83.2	83.Z	83.4	0.2			
F	4,099 6,750 ¹	500	795	0.40	85.3	85.3	85.3	0.0			
6	0,758	20	64	5.50	97.6	97.6	97.6	0.0			
н	8,606	10	30	8.30	107.8	107.8	107.8	0.0			
1	8,/12	310	1345	0.20	113.8	113.8	113.8	0.0			
J	9,240	10	20	6.30	113.8	113.8	113.8	0.0			
Deep Run Tributary C											
Α	898 ²	185	240	2 30	86.0	0.38	86.0	0.0			
B	$1 109^2$	130	155	3.50	86.5	86.5	00.0	0.0			
C	2 1202	270	275	1.60	00.5	00.0	00.0	0.0			
U D	2,723 $2,600^2$	200	200	1.00	92.0	92.0	92.0	0.1			
E E	2,099	290	200	2.10	110.4	110.4	110.6	0.2			
	Z,000	310	300	0.60	111.9	111.9	111.9	0.0			
F	5,380	20	70	2.60	117.5	117.5	117.6	0.1			
Doctors Creek											
А	85 ³	65	539	4.00	60.2	60.2	60.3	0.1			
В	985 ³	166	841	2 60	61.1	61.1	61.2	0.1			
С	1.320^{3}	149	652	3.30	61.4	61.4	61.6	0.1			
D	2170^3	266	1 315	1.60	62.2	62.2	62.3	0.2			
Ē	$2,900^{3}$	2 320	1 303	1.00	62.5	62.5	62.6	0.1			
E	2,000 3,830 ³	166	860	2.50	62.0	62.0	62.0	0.1			
Ġ	4.095 ³	205	2 0 4 2	0.70	74.0	03.0	03.2	0.2			
9	4,000	295	2,942	0.70	71.9	71.9	71.9	0.0			
	4,010	600	5,682	0.40	71.9	71.9	/1.9	0.0			
I	5,695	403	2,482	0.90	71.9	71.9	71.9	0.0			
Feet above confluence with De	ep Run	_	·L		<u> </u>		L	·····			
Feet above confluence with De	ep Run Tributary B										
Feet above Fowlers Bridge Roa	ad										
		IT AGENCI									
					FLOO	JWAY DA	IA				
MONMOUTH COUNTY, I											
(ALL JUI	RISDICTIO	NS)			DEEP RUN	TRIBUTA	RY B -				
		,									
					DEEP RUN TRIBUTARY C – DOCTORS CREEK						

FLOODING SO	URCE		FLOODWA	Y	V	BASE F ATER-SURFAC	LOOD CE ELEVATION		
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
East Creek				/					
A	4,800	33	232	4.10	15.0	15.0	15.1	0.1	
В	5,920	173	633	1.50	16.8	16.8	16.9	0.1	
С	6,945	320	890	0.80	21.9	21.9	21.9	0.0	
D	7,730	127	332	2.30	24.3	24.3	24.5	0.2	
E	8,070	103	269	2.80	25.7	25.7	25.8	0.1	
Flat Creek									
Δ	1.850 ¹	112	570	2 30	10.8	10.9	10.0	0.1	
	2 550	225	000	1.50	11.0	11.0	10.9		
6	2,550	223	909	1.50	11.0	11.0		0.1	
	3,500	90	301	3.60	14.3	14.3	14.4	0.1	
	4,450	120	170	4.10	22.4	22.4	22.4	0.0	
E E	4,950	50	218	3.20	25.1	25.1	25.2	0.1	
F	5,775	46	185	3.70	26.2	26.2	26.4	0.2	
G	6,775	50	134	5.20	29.8	29.8	30.0	0.2	
Н	7,900	96	441	1.30	39.8	39.8	39.8	0.0	
I	8,550'	21	47	8.50	39.9	39.9	39.9	0.0	
Gander Brook									
Α	1.637^2	100	220	0.80	106.0	106.0	106.1	0.1	
В	5,597 ²	35	40	4.30	123.8	123.8	123.8	0.0	
Grovelly Brook									
	2.0053	200	4 5 4 5	0.00	01.1	04.4	01.0		
A	3,005 0,000 ³	290	1,545	0.90	21.1	21.1	21.3	0.2	
В	3,899	232	425	2.90	21.2	21.2	21.4	0.2	
C	4,378°	201	988	1.30	26.7	26.7	26.9	0.2	
D	4,652°	290	577	2.20	23.6	23.6	23.8	0.2	
Feet above downstream side Feet above confluence with S Feet above confluence with M	of State Route 36 till House Brook atawan Creek								
FEDERAL EMERGE		IT AGENCY			EL OOL		ТА		
MONMOU		Y. N.I	1						
(ALL JU	RISDICTIO	NS)			FAST CREE	Κ – ΕΙ Δ Τ (REEK -		
				GANDER BROOK – GRAVELLY BROOK					

[·····			
	FLOODING SOUF	RCE		FLOODWA	Y	N N	ASE FI ATER-SURFAC (FEET N	CE ELEVATION	
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Gra (cor	velly Brook htinued)								
	E F G H I J	5,000 ¹ 6,092 ¹ 11,976 ¹ 13,549 ¹ 14,077 ¹ 14,182 ¹	217 190 100 24 20 30	1,316 767 280 123 55 105	1.00 1.60 3.50 8.10 8.30 3.00	26.7 27.1 53.4 66.7 72.6 75.1	26.7 27.1 53.4 66.7 72.6 75.1	26.9 27.3 53.4 66.7 72.6 75.2	0.2 0.2 0.0 0.0 0.0 0.1
	K L	16,241 ['] 19,093 ¹	15 10	35 15	2.60 6.00	91.9 162.2	91.9 162.2	91.9 162.2	0.0 0.0
Gra	velly Run A B C D vundhog Brook A B C D E F	200^{2} 1,040 ² 1,860 ² 2,650 ² 100 ³ 1,134 ³ 1,142 ³ 1,165 ³ 2,430 ³ 2,970 ³	68 16 33 23 16 50 274 153 23	151 51 42 69 59 60 252 1,836 572 68	$ \begin{array}{r} 1.70 \\ 4.90 \\ 6.00 \\ 3.60 \\ \end{array} $ $ \begin{array}{r} 6.40 \\ 6.40 \\ 1.50 \\ 0.20 \\ 0.50 \\ 4.40 \\ \end{array} $	19.0 20.0 25.2 32.0 49.0 52.7 57.5 57.6 57.6 57.6 57.6	16.2 ⁴ 20.0 25.2 32.0 47.4 ⁵ 52.7 57.5 57.6 57.6 57.6 57.6	16.4 20.2 25.3 32.2 47.6 52.7 57.5 57.6 57.6 57.6 57.6	0.2 0.2 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
¹ Fe ² Fe ³ Fe ⁴ Ele	et above confluence with Mata et above confluence with Meta et above confluence with Hay evation computed without con	awan Creek edeconk River Nor stack Brook sideration of backv	th Branch vater effects fr	rom Metedecor	⁵ Elevation con	nputed without consid	deration of backwa	ater effects from H	aystack Brook
TABL	FEDERAL EMERGEN	CY MANAGEMEN	it agency Y, NJ			FLOOI	OWAY DA	ТА	
E 12	(ALL JURISDICTIONS)				RAVELLY B	ROOK – GRAV	ELLY RUN –	GROUNDHO	OG BROOK

FLOODING SOU	JRCE		FLOODWA	Y	v	BASE F ATER-SURFAC (FEET N	LOOD CE ELEVATION NAVD)	
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Hannabrand Brook								
A	1,050	290	1,231	3.10	11.9	11.9	12.1	0.2
В	2,946	28	169	7.40	18.0	18.0	18.2	0.2
С	5,075 ¹	80	209	7.50	24.5	24.5	24.7	0.2
D	8,150 ¹	277	621	2.10	33.4	33.4	33.6	0.2
E	11,200 ¹	64	171	4.50	45.3	45.3	45.5	0.2
F	12,950 ¹	77	192	4.00	55.7	55.7	55.9	0.2
G	15,000 ¹	46	103	7.30	65.6	65.6	65.8	0.2
Н	16,850 ¹	98	194	4.40	81.2	81.2	81.4	0.2
Haystack Brook								
A	55 ²	257	919	1.10	22.0	20.1 ³	20.3	0.2
В	830 ²	28	169	6.00	22.0	20.5 ³	20.6	0.1
С	865 ²	30	152	6.70	22.0	20.5 ³	20.6	0.1
D	2,250 ²	127	348	2.90	23.7	23.7	23.8	0.1
E	3.030 ²	226	413	2.50	24.8	24.8	24.8	0.0
F	4.235 ²	84	266	3.80	26.9	26.9	27.0	0.1
G	5,165 ²	67	226	3.70	28.8	28.8	29.0	0.2
Н	6.025 ²	89	249	3.30	30.3	30.3	30.4	0.1
l I	6.934 ²	28	249	3.30	30.3	30.3	30.4	0.1
J	6.964^2	66	183	4.60	31.7	31.7	31.7	0.0
ĸ	8.325 ²	204	520	1.60	34.2	34.2	34.3	0.1
L	9.126 ²	28	148	5.60	35.2	35.2	35.3	0.1
M	$9,156^{2}$	76	176	4,70	35.6	35.6	35.6	0.0
N	10.865 ²	112	354	2.00	39.0	39.0	39.2	0.2
0	11.785^2	198	458	1.60	39.8	39.8	40.0	0.2
P	12.685^2	57	156	4.60	42.1	42.1	42.3	0.2
Q	13.356^2	27	166	4.40	44.4	44.4	44.6	0.2
R	13.381^2	27	166	4.40	44.4	44.4	44.6	0.2

¹Feet above confluence with Wreck Pond Brook

12

²Feet above confluence with Metedeconk River North Branch

³Elevation computed without consideration of backwater effects from Metedeconk River North Branch

	FEDERAL EMERGENCY MANAGEMENT AGENCY
A	
μ	MONMOUTH COUNTY, NJ
m	

FLOODWAY DATA

MONMOUTH COUNTY, NJ (ALL JURISDICTIONS)

HANNABRAND BROOK – HAYSTACK BROOK

	FLOODING SOUF	RCE		FLOODWA	Y	V	BASE F ATER-SURFAC	LOOD CE ELEVATION	
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
На	ystack Brook								
	S T U V W X Y Z AA AB AC AD AE AF	14,176 ¹ 14,830 ¹ 14,860 ¹ 15,640 ¹ 16,365 ¹ 17,055 ¹ 17,845 ¹ 19,280 ¹ 20,266 ¹ 20,296 ¹ 21,565 ¹ 22,670 ¹ 23,493 ¹ 23,523 ¹	87 27 126 111 164 50 176 111 16 97 99 66 88 38	234 121 377 278 310 120 371 278 104 161 240 163 281 131	3.10 6.00 1.80 2.40 2.20 5.60 1.80 2.40 6.50 4.20 2.80 4.10 2.40 5.10	46.2 47.3 48.0 49.0 50.1 52.1 54.5 56.3 57.8 58.4 62.0 64.3 68.5 68.5	46.2 47.3 48.0 49.0 50.1 52.1 54.5 56.3 57.8 58.4 62.0 64.3 68.5 68.5	$\begin{array}{c} 46.4\\ 47.5\\ 48.1\\ 49.2\\ 50.3\\ 52.3\\ 54.7\\ 56.4\\ 58.0\\ 58.6\\ 62.0\\ 64.5\\ 68.6\\ 68.6\\ 68.6\end{array}$	0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.0 0.2 0.1 0.1
Не	AG AH AI AJ roys Pond Creek A	24,505 ⁺ 25,905 ¹ 26,875 ¹ 27,785 ¹	64 56 111 34 140	220 141 284 78 670	2.10 3.20 1.60 5.90	69.8 70.7 72.1 73.6 8.9	69.8 70.7 72.1 73.6 4 9 ³	69.9 70.9 72.3 73.8	0.1 0.2 0.2 0.2
	B C D	2,950 ² 4,500 ² 5,100 ²	129 112 65	836 249 100	0.80 2.50 6.20	32.1 34.4 36.7	32.1 34.4 36.7	32.3 34.6 36.9	0.2 0.2 0.2
¹ Fe ² Fe ³ M	eet above confluence with Mete eet above confluence with Sha nimum elevation for establishi	edeconk River Nor rk River Estuary ng 1%-annual cha	th Branch nce boundary	is tidal elevatio	on (8.9 feet NAVI))			
TABLE	FEDERAL EMERGENCY MANAGEMENT A	IT AGENCY Y, NJ			FLOO	OWAY DA	TA		
12	(ALL JUR	(ALL JURISDICTIONS)			HAYSTAC	CK BROOK	– HEROY	S POND	CREEK

						BASE F	LOOD	
FLOODING SOU	RCE		FLOODWA	Y	v V	ATER-SURFAC	E ELEVATION	
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Hockhockson Brook								
A		227	1,470	0.80	46.3	46.3	46.5	0.2
В	280	99	522	2.30	46.3	46.3	46.5	0.2
С	1,500	161	666	1.80	47.0	47.0	47.2	0.2
D	2,520	190	571	2.10	47.6	47.6	47.8	0.2
E	3,000	74	252	4.70	48.0	48.0	48.2	0.2
F	3,500	139	291	4.10	49.7	49.7	49.9	0.2
G	4,250 ¹	196	577	2.10	51.4	51.4	51.6	0.2
Hog Swamp Brook		1						
с. А	300 ²	80	1,215	0.80	20.5	20.5	20.7	0.2
В	1.450^{2}	65	780	1.20	20.5	20.5	20.7	0.2
Ċ	2.570^{2}	130	1.247	0.80	20.5	20.5	20.7	0.2
D	$3,550^2$	140	573	1 70	21.5	21.5	21.7	0.2
F	$5,280^2$	69	405	2 40	32.5	32.5	32.6	0.1
E	6 070 ²	115	283	3.40	33.2	33.2	33.4	0.1
G	6.080 ²	85	200	3.90	35.4	35.4	35.4	0.2
С Ц	0,500 9,560 ²	100	406	2.40	41.0	41.0	42.4	0.0
	0,000	190	400	2.40	41.9	41.9	42.1	0.2
I .	9,140	170	473	1.40	43.3	43.3	43.4	0.1
J	9,840	100	1/2	4.00	43.4	43.4	43.6	0.2
ĸ	11,220	280	539	1.30	48.6	48.6	48.7	0.1
L	12,320	55	101	6.70	49.9	49.9	49.9	0.0
Μ	12,710 ²	55	141	4.80	51.0	51.0	51.2	0.2
N	13,910 ²	70	100	4.40	54.6	54.6	54.8	0.2
0	14,930 ²	150	982	0.50	63.5	63.5	63.5	0.0
Р	16,410 ²	91	232	1.90	63.5	63.5	63.6	0.1
Feet above confluence with Pin Feet above confluence with De	e Brook 1 al Lake							
FEDERAL EMERGEN	ICY MANAGEMEN	IT AGENCY					τ.	
MONMOUT		Y, NJ						
(ALL JU	(ALL JURISDICTIONS)	N5)	н	оскнос	KSON BRO	OK – HO	G SWAMP	BROOK

						BASE F	LOOD	
FLOODING SOUR	CE		FLOODWA	Y	V V	ATER-SURFAC FEET N	CE ELEVATION NAVD)	
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Hollow Brook A B C D E F G H	0 ¹ 1,140 ¹ 2,348 ¹ 5,538 ¹ 6,748 ¹ 6,948 ¹ 7,148 ¹ 7,488 ¹	177 118 272 90 24 35 39 29	827 1,461 836 205 56 82 86 58	0.80 0.30 0.80 2.30 8.60 5.80 5.60 8.10	13.2 16.3 20.2 34.3 45.2 47.1 48.1 50.9	13.2 16.3 20.2 34.3 45.2 47.1 48.1 50.9	13.4 16.5 20.4 34.5 45.2 47.2 48.1 50.9	0.2 0.2 0.2 0.0 0.1 0.0 0.0
l J K	7,588 ¹ 7,948 ¹ 8,308 ¹	645 163 164	2,186 112 144	0.20 4.70 3.40	51.9 52.9 55.7	51.9 52.9 55.7	52.1 53.1 55.9	0.2 0.2 0.2
Indian Run A B C D E Judas Creek (Upstream Reach) A B C D E F	370^{2} 1,220 ² 1,320 ² 2,440 ² 3,480 ² 200 ³ 500 ³ 830 ³ 1,050 ³ 1,600 ³ 2,200 ³	145 38 275 174 147 138 102 50 102 60 52	521 294 2,821 1,026 613 1,078 550 44 108 47 72	$\begin{array}{c} 2.00\\ 3.50\\ 0.40\\ 1.00\\ 1.70\\ \end{array}$ $\begin{array}{c} 0.20\\ 0.40\\ 5.40\\ 2.20\\ 5.10\\ 3.30\\ \end{array}$	67.9 69.5 80.4 81.1 82.8 29.1 29.1 29.3 31.1 35.2 39.9	67.9 69.5 80.4 81.1 82.8 29.1 29.1 29.3 31.1 35.2 39.9	68.1 69.7 80.5 81.3 83.0 29.3 29.3 29.3 31.1 35.2 40.0	0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.1
² Feet above mouth ³ Feet above county boundary ³ Feet above limit of detailed study	(limit of detailed	study is appro	oximately 900 fe	eet below State H	lighway 35)			
FEDERAL EMERGENCE MONMOUT	FEDERAL EMERGENCY MANAGEMENT AGENCY				FLOOI	DWAY DA	ATA	
(ALL JUR	(ALL JURISDICTIONS)				BROOK – IN (UPSTR	IDIAN RUN REAM REA	I – JUDAS (CH)	CREEK

FLOODING SOU	RCE		FLOODWA	Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)									
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE						
Jumping Brook 1						·								
А	01	318	614	2.70	16.0	16.0 ³	16.1	0.1						
В	565]	312	1,787	0.50	16.6	16.6	16.7	0.1						
C	885	215	1,096	0.70	17.6	17.6	17.7	0.1						
D	1,615	100	705	1.10	22.2	22.2	22.2	0.0						
E	2,365 ¹	105	409	1.90	22.3	22.3	22.4	0.1						
F	2,955 ¹	122	.463	1.60	24.1	24.1	24.3	0.2						
G	3,985 ¹	96	445	1.70	27.6	27.6	27.8	0.2						
Н	4,465 ¹	70	194	3.80	29.4	29.4	29.6	0.2						
1	5,335 ¹	65	313	2.20	32.7	32.7	32.9	0.2						
J	5,556 ¹	130	1.019	0.70	39.3	39.3	39.3	0.0						
К	7,466 ¹	109	239	2.40	40.7	40.7	40.8	0.0						
L	8.006 ¹	121	574	1.00	44 1	44 1	44.3	0.1						
Μ	8,966 ¹	101	462	1.20	44.6	44.6	44.8	0.2						
umping Brook 2														
A	0 ²	130	1.335	2.00	8.9	8.9	9.1	0.2						
В	500 ²	580	2.225	1.20	8.9	8.9	91	0.2						
С	2.850^{2}	325	1.035	2.60	8.9	89	91	0.2						
D	3.360^{2}	120	490	5.40	10.3	10.3	10.5	0.2						
E	3.900 ²	135	700	3.80	11.7	11.7	11.0	0.2						
F	4.400^{2}	255	1 035	2 60	12.4	12.4	12.6	0.2						
G	4750^2	280	765	3.55	12.4	12.4	13.1	0.2						
н	$5,150^2$	50	245	10.00	15.1	12.3	15.1	0.2						
1	$5,400^2$	50	250	10.30	17.0	17.0	10.2	0.1						
	5,400	130	430	6.20	21.3	21.2	10.0	0.1						
к 2	5,700	229	430	2.00	21.5	21.3	21.0	0.2						
L	6,300 ²	150	897	3.00	25.5	25.5	25.6	0.2						
Feet above Private Drive (Upst Feet above mouth Elevation computed without co	ream Face) (Private	drive is appr vater effects f	oximately 775 f rom Nut Swam	eet below West F p Brook	ront Street)									
FEDERAL EMERGEN	ICY MANAGEMEN	T AGENCY			EL OOL		ТА							
MONMOUT	H COUNT	Y, NJ			FLUUL		IA							
(ALL JUF	(ALL JURISDICTION						DNS)							
_			_											

FLOODING SO	URCE		FLOODWA	Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)				
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Jumping Brook 2				/					
(continued)									
M	6,700	348	1,732	1.60	25.7	25.7	25.9	0.2	
N	6,900	116	569	4.70	25.7	25.7	25.9	0.2	
0	8,052	386	581	4.60	27.2	27.2	27.4	0.2	
Р	8,972	205	1,834	1.40	38.3	38.3	38.3	0.0	
Q	9,100	317	3,924	0.80	38.3	38.3	38.3	0.0	
R	10,050	390	3,086	0.80	38.3	38.3	38.3	0.0	
S	11,400	132	835	2.80	38.3	38.3	38.3	0.0	
Т	12,600	123	454	5.20	38.7	38.7	38.7	0.0	
U	13,100	87	249	9.60	39.6	39.6	39.8	0.2	
V	13,500	99	554	4.10	42.3	42.3	42.5	0.2	
W	13,620	283	3,287	0.80	52.2	52.2	52.4	0.2	
Х	15,000	225	1,778	1.40	52.2	52.2	52.4	0.2	
Y	15,700	199	1,255	1.80	52.2	52.2	52.4	0.2	
Z	17,100	176	822	2.70	52.4	52.4	52.6	0.2	
AA	18,500	170	316	7.40	54.2	54.2	54.4	0.2	
AB	18,900	67	207	8.70	57.0	57.0	57.2	0.2	
AC	19,720	95	313	5.70	60.8	60.8	61.0	0.2	
AD	19,940	187	2,340	0.80	71.4	71.4	71.5	0.1	
AE	19,990	240	3,858	0.00	71.4	71.4	71.5	0.1	
AF	21,220	140	3,200	0.00	71.4	71.4	71.5	0.1	
AG	21,470	250	2,013	0.90	71.4	71.4	71.6	0.2	
AH	22,125	350	2,704	0.70	71.4	71.4	71.6	0.2	
Al	22,240	350	2,070	0.90	71.4	71.4	71.6	0.2	
AJ	23,230	319	1,115	1.10	72.1	72.1	72.2	0.1	
AK	23,620	289	808	1.60	72.2	72.2	72.3	0.1	
AL	24,495	84	322	3.90	73.9	73.9	74.0	0.1	

TABLE 12

MONMOUTH COUNTY, NJ (ALL JURISDICTIONS)

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

JUMPING BROOK 2

		•.]
	FLOODING SOU	RCE		FLOODWA	Y	v v	BASE FI ATER-SURFAC (FEET N	LOOD CE ELEVATION	
	CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Jun (co	nping Brook 2 htinued)								
	AM AN AO AP	25,070 25,770 26,605 27,220	172 109 83 150	688 370 244 2,076	1.80 4.10 5.20 0.60	78.1 78.7 82.2 90.1	78.1 78.7 82.2 90.1	78.1 78.9 82.3 90.1	0.0 0.2 0.1 0.0
Littl Littl	e Silver Creek A B C ² D E F G H e Silver Tributary A A	9,480 9,980 10,479 10,980 11,580 12,080 12,680 13,180 140	35 150 46 100 268 140 99 110 113	204 449 283 487 683 363 224 280 240 240	0.4 1.7 2.7 1.6 1.1 2.1 3.4 2.4 0.04	8.0 8.2 11.3 11.5 11.6 11.9 12.9 13.8 12.9	8.0 8.2 11.3 11.5 11.6 11.9 12.9 13.8 12.9	8.0 8.4 11.3 11.6 11.8 12.1 13.1 14.0 13.1	0.0 0.2 0.0 0.1 0.2 0.2 0.2 0.2 0.2
								-	
TABLE	FEDERAL EMERGENCY MANAGEMENT AGENCY					FLOOI	DWAY DA	ТА	
E 12	(ALL JURISDICTIONS)				JUMPIN	G BROOK 2 LITTLE SIL\	– LITTLE S /ER TRIBU	SILVER CRE TARY A	EK –

FLOODING SO	URCE		FLOODWA	Y	V	BASE F ATER-SURFAC	LOOD CE ELEVATION	
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Little Silver Tributary 1 A ² B C ² D E F ² Little Silver Tributary 2 A B C ² D E F G H ² I J Little Silver Tributary 2A A B C C	1,830 1,910 2,020 2,450 2,850 3,150 3,270 3,570 3,870 4,270 4,670 5,070 5,450 5,950 6,350 6,850 5,950 6,350 1,220 1,820	30 10 152 28 91 33 138 55 115 140 80 102 56 40 53 42 30 38 38 38	142 55 334 60 91 142 232 126 250 501 235 199 91 81 59 64 56 37 37	0.9 2.2 0.4 2.0 1.3 0.9 1.6 2.8 1.4 0.7 1.5 1.8 2.4 2.7 3.7 3.4 2.5 3.1 3.1	10.4 10.4 11.1 11.1 11.9 14.9 8.4 8.9 12.9 13.0 13.1 13.5 13.7 18.7 19.1 22.4 14.1 15.9 19.5	10.4 10.4 11.1 11.1 11.9 14.9 8.4 8.9 12.9 13.0 13.1 13.5 13.7 18.7 19.1 22.4 14.1 15.9 19.5	10.4 10.5 11.3 11.3 12.1 15.1 8.5 9.0 13.1 13.2 13.3 13.7 13.8 18.8 19.3 22.5 14.4 16.0 19.7	0.0 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
¹ Feet above mouth ² Data at bridge culverts reflect	t conditions on upstre	am side of bri	dge					
FEDERAL EMERG	FEDERAL EMERGENCY MANAGEMENT AGENCY				FLOOI	DWAY DA	ТА	
(ALL JU	(ALL JURISDICTIONS)			LITTLE SI LITTLE SI	LVER TRIBUTAR' LVER TRIBUTAR'	Y 1 – LITTLE SI Y 2 – LITTLE SI	LVER TRIBUTA LVER TRIBUTA	RY 2 - RY 2A

	FLOODING SOUR	RCE		FLOODWA	Y	v	VATER-SURFAC		
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Littl	e Silver Tributary 2B A ¹ B	400 ² 450 ²	101 101	656 656	0.04 0.04	25.1 25.1	25.1 25.1	25.2 25.2	0.1 0.1
Lon	g Brook A B C D E F G H I J K L M N O P Q R S T	570^3 $1,075^3$ $1,938^3$ $1,968^3$ $2,665^3$ $3,913^3$ $3,948^3$ $5,017^3$ $5,047^3$ $6,065^3$ $6,781^3$ $6,811^3$ $7,535^3$ $8,255^3$ $8,255^3$ $8,285^3$ $8,450^3$ $9,440^3$ $10,589^3$ $10,619^3$ $11,615^3$	20 47 95 28 36 16 104 41 153 100 25 63 116 114 26 35 43 98 61 20	72 112 447 129 118 92 547 171 570 344 90 208 324 216 72 118 111 204 206 73	$\begin{array}{c} 8.30\\ 5.30\\ 1.30\\ 4.60\\ 5.00\\ 6.50\\ 1.10\\ 3.50\\ 1.00\\ 1.70\\ 6.60\\ 2.90\\ 1.60\\ 2.40\\ 7.20\\ 4.40\\ 4.70\\ 2.50\\ 2.50\\ 5.00\\ \end{array}$	74.0 78.8 85.5 85.5 86.7 93.4 94.3 96.5 96.7 97.0 98.0 99.0 99.7 101.1 101.1 101.1 101.1 101.8 104.0 108.0 108.2 110.0	74.0 78.8 85.5 85.5 86.7 93.4 94.3 96.5 96.7 97.0 98.0 99.0 99.0 99.7 101.1 101.1 101.1 101.1 101.8 104.0 108.0 108.2 110.0	74.2 78.8 85.7 85.7 86.9 93.5 94.4 96.5 96.9 97.2 98.2 99.0 99.9 101.3 101.3 101.3 102.0 104.2 108.2 108.3 110.1	$\begin{array}{c} 0.2 \\ 0.0 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.0 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.1 \\ 0.1 \end{array}$
¹ Da ² Fe ³ Fe	ta at bridge culverts reflect co et above mouth et above confluence with Man	nditions on upstre asquan River	am side of bri	dge	<u> </u>	I	I		
TABL	FEDERAL EMERGEN	CY MANAGEMEN	it agency Y, NJ			FLOOI	OWAY DA	ТА	
E 12	(ALL JUR	ISDICTIO	NS)	L	ITTLE SI	VER TRIB	UTARY 2I	B - LONG	BROOK

F 12	(ALL JURISDICTIONS)				LONG BROOK – MAHORAS BROOK						
TARI	FEDERAL EMERGENCY MANAGEMENT AGENCY					FLOOI	OWAY DA	ТА			
¹ Fe ² Fe	eet above confluence with Man eet above confluence with Waa	asquan River ackaack Creek	I	·	I	L	L		L		
	Μ	11,580 ²	106	222	3.10	61.2	61.2	61.2	0.0		
	L	10,510 ²	185	470	1.40	58.6	58.6	58.8	0.2		
	ĸ	7,460 ⁻ 8 180 ²	183	217	5.30	42.7	42.7	42.9	0.2		
	I.	6,330 ²	423	353	3.20	37.1	37.1	37.2	0.1		
	н	4,690 ²	292	540	2.10	35.5	35.5	35.6	0.1		
	G	4,588 ²	56	350	3.30	35.4	35.4	35.6	0.2		
1	F	4,300 ²	260	613	2.30	32.4	32.4	32.6	0.2		
1	E	3,900 ²	150	272	5.20	29.5	29.5	29.6	0.2		
1	D D	2,500 3,520 ²	285	704	2.00	24.0	24.0	24.1			
	C.	2 9002	175	245	5.80	21.7	21.7	21.9	0.2		
1	R	1 000 ²	394	1 197	1.20	10.9	217	17.0	0.1		
Ма	horas Brook	500 ²	04	107	7.00	16.0	16.0	17.0	0.1		
	AE	17,384'	57	211	1.70	124.2	124.2	124.3	0.1		
	AD	17,354	34	117	3.10	124.1	124.1	124.2	0.1		
	AC	17,019	59	165	2.20	122.4	122.4	122.4	0.0		
	AB	16,989	74	165	2.20	122.4	122.4	122.4	0.0		
	AA	16,669	37	80	4.50	120.1	120.1	120.3	0.2		
	Z	15,664	38	135	2.70	118.7	118.7	118.8	0.1		
	Y	14,645	70	224	1.60	118.2	118.2	118.2	0.0		
	Х	14,615	21	33	10.80	116.3	116.3	116.3	0.0		
	W	13,459 ¹	25	66	5.50	113.6	113.6	113.8	0.2		
	V	13,429 ¹	42	77	4.70	113.6	113.6	113.7	0.1		
(co	ntinued) U	12.510 ¹	52	141	2.60	111.4	111.4	111.6	0.2		
Lor	ng Brook			FEET)	SECOND)		······································				
	CROSS SECTION	DISTANCE	WIDTH (FEET)	AREA (SQUARE	MEAN VELOCITY (FEET PER	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
			<u> </u>				(FEET N	IAVD)	· · · · · · · · · · · · · · · · · · ·		
	FLOODING SOUR	RCE		FLOODWA	Y	V V	VATER-SURFAC	CE ELEVATION			
							BASE F	LOOD			

FLOODING SOU	RCE	FLOODWAY			BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)						
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE			
Mahoras Brook						•					
N	12.070 ¹	100	156	4.30	67.7	67.7	67.7	0.0			
0	13.935 ¹	226	310	2.00	79.8	79.8	79.8	0.0			
P	15.140 ¹	68	168	3.80	86.0	86.0	86.2	0.0			
Q	16,780 ¹	118	248	2.60	100.5	100.5	100.7	0.2			
Manalapan Brook											
Α	945 ²	436	1.369	1.30	76.3	76.3	76.4	0.1			
B	1.968 ²	484	1 241	1 40	76.6	76.6	767				
č	2 2112	463	1 372	1 30	77.6	77.6	777	0.1			
Ŭ D	3.6542	405	1,072	1.50	77.0	77.0	70.4	0.1			
5	1 067 ²	2470	1,104	1.00	70.0	78.0	78.1	0.1			
L E	5 1 20 ²	147	409	3.60	19.2	19.2	79.2	0.0			
F	0,100 0,070 ²	142	033	3.10	81.1	81.1	81.2	0.1			
G	6,079 7,405 ²	384	1,003	1.60	82.3	82.3	82.3	0.0			
H	7,165	450	1,214	1.40	83.0	83.0	83.0	0.0			
1	8,363-	510	1,177	1.30	84.2	84.2	84.2	0.0			
J	9,705	445	1,023	1.50	85.9	85.9	85.9	0.0			
K	10,978	509	1,649	1.00	86.5	86.5	86.5	0.0			
L	12,507 ²	516	686	2.30	87.6	87.6	87.7	0.1			
Μ	13,526 ²	707	1,040	1.50	89.5	89.5	89.5	0.0			
Ν	$14,424^2$	265	465	3.40	91.0	91.0	91.0	0.0			
0	14.597 ²	82	326	3.90	92.3	92.3	92.3	0.0			
P	15.657^2	491	1 365	0.70	93.6	93.6	93.6	0.0			
0	$17,126^2$	318	736	1.40	04.5	04.5	04.5	0.0			
B	17,120 $17,277^2$	280	765	1.40	94.5	04.5	94.5	0.0			
e e	10,4002	200	703	1.30	94.0	94.0	94.7	0.1			
T	19,457 ²	70	273	3.70	95.8	95.8	95.9	0.1			
Feet above confluence with Wa Feet above county boundary	ackaack Creek		<u> </u>								
FEDERAL EMERGEN	CY MANAGEMEN	T AGENCY									
MONMOUT	H COUNT	Y, NJ			FLOO	DWAY DA	AT				
(ALL JUF	(ALL JURISDICTIONS)										

	37,734 38,552 39,661 40,305	112 102 118	170 199 236	2.20 1.90 1.60	136.9 137.3 140.6 142.1	130.9 137.3 140.6 142.1	130.9 137.3 140.6 142.1	0.0 0.0 0.0
AK AL AM	34,972 36,479 36,677 37,734	185 28 306 316	412 94 1,623	1.50 4.00 1.20	128.0 129.9 136.7	128.0 129.9 136.7 136.9	128.0 129.9 136.7 136.9	0.0
AH AI AJ	31,299 32,499 33,605	234 292 139	375 672 173	1.70 0.90 3.60	120.9 123.0 125.0	120.9 123.0 125.0	120.9 123.0 125.0	0.0 0.0 0.0
AE AF AG	28,991 29,165 29,850	92 148 348	308 525 1,031	2.70 1.60 0.80	118.5 119.5 119.8	118.5 119.5 119.8	118.5 119.5 119.8	0.0 0.0 0.0
AB AC AD	25,676 26,815 27,870	206 260 225	481 587 532	2.10 1.40 1.60	113.4 114.8 116.5	113.4 114.8 116.5	113.4 114.8 116.5	0.0 0.0 0.0
Y Z AA	22,977 22,998 24,032 25,239	281 244 243	1,915 1,585 1,251	1.20 0.70 0.80	113.2 113.2 113.3	113.2 113.2 113.3	113.2 113.2 113.3	0.0 0.0 0.0
(continued) U V W	20,223 20,835 22,023	160 217 202	399 506 401	2.50 2.00 2.50	99.1 99.7 101.2	99.1 99.7 101.2	99.1 99.8 101.3	0.0 0.1 0.1
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREAS
FLOODING S	DISTANCE ¹	WIDTH	FLOODWA SECTION AREA	Y MEAN VELOCITY	REGULATORY	VATER-SURFAC	ELEVATION	INC

FLOODING SOU	RCE		FLOODWA	Y	BASE FLOOD WATER-SURFACE ELEVATION				
						(FEET N	AVD)		
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Manalapan Brook (continued)									
AU AV AW AX AY AZ BA BB	42,611 43,974 ¹ 45,097 ¹ 46,091 ¹ 46,216 ¹ 47,225 ¹ 48,259 ¹ 48,945 ¹	110 131 157 35 149 110 227 290	210 256 290 112 829 439 688 599	1.80 1.50 1.30 2.70 0.40 0.70 0.40 0.50	113.4 114.8 116.5 118.5 119.5 119.8 120.9 123.0	113.4 114.8 116.5 118.5 119.5 119.8 120.9 123.0	113.4 114.8 116.6 118.5 119.6 119.9 121.0 123.0	0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.0	
BC BD BE BF BG BH BI	49,288 ¹ 50,034 ¹ 51,071 ¹ 51,704 ¹ 52,735 ¹ 52,902 ¹ 53,335 ¹	130 150 70 79 38 51 10	127 247 105 133 29 97 12	2.40 1.20 2.90 2.30 1.60 0.50 3.80	125.0 164.4 167.2 170.6 176.2 178.9 181.1	125.0 164.4 167.2 170.6 176.2 178.9 181.1	125.0 164.5 167.3 170.8 176.3 178.9 181.2	0.0 0.1 0.1 0.2 0.1 0.0 0.1	
Manalapan Brook Tributary A A B C D E F	1,690 ² 7,181 ² 8,237 ² 9,134 ² 10,296 ² 14,942 ²	120 100 100 100 60 50	110 200 200 150 150 50	2.60 1.50 1.40 1.90 1.50 4.60	91.7 108.3 109.8 112.3 117.3 131.7	91.7 108.3 109.8 112.3 117.3 131.7	91.8 108.3 109.9 112.3 117.5 131.7	0.1 0.0 0.1 0.0 0.2 0.0	
Feet above county boundary Feet above confluence with Ma FEDERAL EMERGER	nalapan Brook				FLOOI	DWAY DA	TA		
(ALL JUI	(ALL JURISDICTION			MA	MANALA NALAPAN E	APAN BRO BROOK TR	OK – BUTARY A		

FLOODING SOU	IRCE	FLOODWAY			BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)				
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Manalapan Brook Tributary B									
Α	264 ¹	140	70	2 20	123.6	123.6	123.7	01	
В	528 ¹	140	140	1.10	124.8	124.8	125.0	0.1	
С	2.746 ¹	20	40	3.90	132.7	132.7	132.8	0.1	
D	5,861 ¹	20	50	3.30	147.1	147.1	147.2	0.1	
Manasquan River									
A	12 ²	81	532	4 20	43.3	43.3	43.5	0.2	
B	44 ²	59	373	6.00	43.3	13.3	13.5	0.2	
C · · ·	785 ²	164	636	3 50	40.0	40.0	40.0	0.2	
	1 6852	50	327	6.90	44.1	44.1	44.0	0.2	
E	3.2452	69	207	0.00	44.9	44.9	40.1	0.2	
E	3,245 4,025 ²	00	397	5.60	47.3	47.3	47.4	0.1	
F	4,035	70	402	5.60	48.2	48.2	48.3	0.1	
G	4,835	50	388	5.80	49.1	49.1	49.2	0.1	
н	5,346	94	608	3.70	49.8	49.8	49.9	0.1	
I .	5,396-	69	457	4.90	49.8	49.8	49.9	0.1	
J	6,635	52	292	7.70	51.2	51.2	51.2	0.0	
ĸ	7,490 [°]	44	301	7.40	53.5	53.5	53.5	0.0	
L	8,3402	95	520	4.30	55.2	55.2	55.2	0.0	
М	9,2802	273	917	2.40	55.8	55.8	55.8	0.0	
N	10,200 ²	123	550	3.60	56.8	56.8	56.9	0.1	
0	12,330 ²	319	1,257	1.60	58.0	58.0	58.2	0.2	
P	13,232 ²	105	753	2.69	58.5	58.5	58.7	0.2	
Q	13,282 ²	47	394	5.00	58.5	58.5	58.7	0.2	
R	13,950 ²	50	367	5.40	58.9	58.9	59.1	0.2	
S	15,410 ²	50	395	5.00	60.2	60.2	60.4	0.2	
т	16.585 ²	55	465	4.30	61.1	61.1	61.3	0.2	
U	17,605 ²	51	420	4.70	61.7	61.7	61.8	0.1	
Feet above confluence with Ma Feet from Southard Road	l Inalapan Brook	<u>. </u>	<u> </u>	<u> </u>	L	<u> </u>	1		
FEDERAL EMERGE	FEDERAL EMERGENCY MANAGEMENT AGENCY						————— Т л		
MONMOUT	ГН СОИМТ	Y, NJ			FLUUI	JWAT DA	IA		
(ALL JUI	(ALL JURISDICTION			MA	NALAPAN BI		BUTARY B		

FLOODING SOU	JRCE		FLOODWAY			BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)				
CROSS SECTION	DISTANCE1	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
Ianasquan River continued)										
Ý V	18,425	51	371	5.30	62.2	62.2	62.4	0.2		
W	19.230	45	333	5.90	63.0	63.0	63.2	0.2		
X	20,190	70	463	3.90	64.1	64.1	64.3	0.2		
Y	20,990	61	511	3.50	64.4	64.4	64.6	0.2		
Z	21,585	57	389	4.60	64.6	64.6	64.7	0.1		
AA	22,515	77	560	3.20	65.8	65.8	66.0	0.2		
AB	22,565	55	378	4.70	65.8	65.8	66.0	0.2		
AC	23,225	48	332	5.40	66.2	66.2	66.4	0.2		
AD	23,890	77	370	4.80	67.0	67.0	67.2	0.2		
AE	24,990	53	388	4.60	68.1	68.1	68.3	0.2		
AF	26,755	75	450	4.00	69.3	69.3	69.5	0.2		
AG	28,096	83	456	2.80	70.4	70.4	70.6	0.2		
AH	28,146	48	264	6.00	70.4	70.4	70.6	0.2		
AI	29,265	66	335	4.70	71.9	71.9	72.0	0.1		
AJ	30,240	40	261	6.10	73.0	73.0	73.2	0.2		
AK	31,340	70	530	3.00	74.0	74.0	74.2	0.2		
AL	33,180	45	279	5.20	74.7	74.7	74.8	0.1		
AM	34,820	247	764	1.90	76.5	76.5	76.7	0.2		
AN	35,650	396	1,166	0.80	76.8	76.8	77.0	0.2		
AO	36,450	43	147	6.00	76.8	76.8	77.0	0.2		
AP	37,330	42	145	6.10	78.9	78.9	78.9	0.0		
AQ	38,400	37	169	4.40	79.8	79.8	79.8	0.0		
AR	39,000	32	128	5.80	80.7	80.7	80.7	0.0		
AS	39,760	31	144	5.20	82.4	82.4	82.4	0.0		
AT	40,630	31	105	6.00	83.4	83.4	83.4	0.0		
AU	41,155	31	130	4.90	84.8	84.8	84.8	0.0		

FEDERAL EMERGENCY MANAGEMENT AGENCY

TABLE

12

FLOODWAY DATA

MONMOUTH COUNTY, NJ (ALL JURISDICTIONS)

MANASQUAN RIVER

CROSS SECTION DIS Manasquan River (continued) AV 41 AW 41 AW 41 AX 41 AY 42 AZ 42	STANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER	REGULATORY	WITHOUT	WITH	
Manasquan River (continued) AV 41 AW 41 AX 41 AX 41 AY 42 A7 42	1,205 ¹			SECOND)		FLOODWAY	FLOODWAY	INCREAS
AV 41 AW 41 AX 41 AY 42 AZ 42	1,205 ¹							
AW 41 AX 41 AY 42 A7 42		16	68	9.30	84.8	84.8	84.8	0.0
AX 41 AY 42 AZ 42	1.000	43	182	3.50	86.3	86.3	86.4	0.0
AY 42 A7 42	1,950 ¹	39	164	3.90	86.5	86.5	86.6	0.1
A7 42	2,000 ¹	46	181	3.50	86.6	86.6	86.7	0.1
1 12	2,465 ¹	42	103	6.20	87.3	87.3	87.4	0.1
BA 42	2,495 ¹	45	147	4.30	87.3	87.3	87.4	0.1
BB 43	3,970 ¹	26	88	7.20	91.0	91.0	91.0	0.0
BC 44	4,480 ¹	44	116	3.30	93.3	93.3	93.3	0.0
fanasquan River Tributary A								
A	130 ²	34	126	5.40	92.0	92.0	92.2	0.2
B 1	1,325 ²	33	154	4.40	98.1	98.1	98.1	0.0
C 2	2,310 ²	32	96	7.10	101.7	101.7	101.7	0.0
D 3	3,220 ²	28	72	9.50	105.7	105.7	105.7	0.0
E 3	3,250 ²	28	120	5.70	107.1	107.1	107.1	0.0
F 3	3,620 ²	42	119	5.80	109.1	109.1	109.1	0.0
G 4	1,350 ²	57	204	3.40	113.8	113.8	113.9	0.1
H 5	5,175 ²	45	132	5.20	117.2	117.2	117.4	0.2
lanasquan River Tributary B								
A	430 ²	16	55	8.30	82.8	82.8	83.0	0.2
B 1	1,160 ²	20	70	6.60	88.9	88.9	88.9	0.0
C 1	1,620 ²	20	79	5.80	91.9	91.9	92.0	0.1
D 2	2,015 ²	31	110	4.20	93.8	93.8	94.0	0.2
E 2	2,820 ²	32	73	6.20	96.4	96.4	96.5	0.1
F 3	3,470∠	111	190	2.40	99.9	99.9	100.1	0.2

TABLE 12

MONMOUTH COUNTY, NJ (ALL JURISDICTIONS)

FLOODWAY DATA

MANASQUAN RIVER – MANASQUAN RIVER TRIBUTARY A – MANASQUAN RIVER TRIBUTARY B

FLOODING SOUR	RCE		FLOODWA	Y	WATER-SURFACE ELEVATION (FEET NAVD)				
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
lanasquan River Tributary B									
continued)						105.0			
G	4,490	42	148	3.10	105.2	105.2	105.4	0.2	
н	4,520	163	354	1.30	105.5	105.5	105.7	0.2	
ł	5,160	20	66	7.00	106.5	106.5	106.7	0.2	
J	5,905	513	1,010	0.50	110.9	110.9	111.1	0.2	
K	5,935	206	477	1.00	111.2	111.2	111.3	0.1	
L	6,965	15	71	6.50	114.7	114.7	114.8	0.1	
Μ	6,995	24	94	4.90	115.2	115.2	115.3	0.1	
N	7,460	13	58	7.90	117.0	117.0	117.2	0.2	
0	7,490	25	85	5.40	118.1	118.1	118.2	0.1	
P	8,185	17	62	7.40	121.7	121.7	121.7	0.0	
Q	9,000	30	334	1.40	129.2	129.2	129.4	0.2	
R	9,030	28	155	2.90	129.2	129.2	129.4	0.2	
lanasquan River Tributary C									
A	80	135	120	5.50	79.8	79.8	80.0	0.2	
В	620	19	83	7.90	82.2	82.2	82.4	0.2	
С	1,126	68	189	3.50	85.8	85.8	85.8	0.0	
D	1,156	22	138	4.70	85.9	85.9	85.9	0.0	
Ē	1.811	117	121	5.40	88.4	88.4	88.4	0.0	
F	2,510	115	311	2.10	90.4	90.4	90.5	0.1	
G	3 520	94	273	2 40	96.7	96.7	96.9	0.2	
н	4 435	68	237	2.10	101 1	101 1	101.3	0.2	
1	4,400	56	182	3.60	101.1	101.1	101.3	0.2	
, 1	5 010	73	236	2.80	102.5	102.5	102.7	0.2	
J K	5,010	56	101	2.00	102.5	102.0	102.7	0.2	
	5,040	20	110	5.40	102.0	102.0	102.7	0.1	
L Feet above confluence with Man	asquan River	33	110	5.00	104.2	104.2	104.4	0.2	
FEDERAL EMERGEN			FLOOI	OWAY DA	ТА				

(ALL JURISDICTIONS)

12

MANASQUAN RIVER TRIBUTARY B -MANASQUAN RIVER TRIBUTARY C

	<u> </u>	1			· · · · · · · · · · · · · · · · · · ·			,
FLOODING	G SOURCE		FLOODWA	Y	۷ v	BASE F VATER-SURFAC	LOOD CE ELEVATION	
						(FEET N	NAVD)	
CROSS SECTIO	N DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Manasquan River Tributa (continued)	ary C							
M	6,290 ¹	32	121	5.40	106.1	106.1	106.1	0.0
N	7,0301	16	84	7.80	108.3	108.3	108.5	0.2
0	7,060 ¹	33	134	4.90	109.3	109.3	109.4	0.1
P	7,903 ¹	247	634	1.00	110.8	110.8	110.9	0.1
Q	9,165 ¹	57	150	4.40	115.2	115.2	115.4	0.2
Marl Brook								
А	1.660^2	70	149	3.90	71.2	71.2	71.2	0.0
В	2.590^{2}	72	110	4.30	74.6	74.6	74.6	0.0
c	4,930 ²	70	166	3.10	82.4	82.4	82.6	0.2
Matawan Creek								
A	19.674 ³	333	2.488	1.00	18.9	18.9	19.0	0.1
В	19.907 ³	402	3 273	0.60	18.9	18.9	19.0	0.1
Č	21 098 ³	378	2 351	0.70	18.9	18.9	19.0	0.1
о П	21,000	286	302	4.40	10.0	10.9	10.0	0.1
	22,229	170	111	3.20	24.4	24.4	19.0	0.2
Б. С	23,020	119	411	3.20	24.4	24.4	24.0	0.2
F	23,917	105		1.40	25.3	25.3	25.5	0.2
G 	24,885	10/	1/8	5.50	30.2	30.2	30.4	0.2
Н	26,360	120	530	0.90	39.6	39.6	39.6	0.0
I	26,466 [°]	140	645	0.70	40.3	40.3	40.3	0.0
J	27,522°	90	95	4.30	48.3	48.3	48.3	0.0
К	27,628 [°]	220	730	0.60	50.8	50.8	50.9	0.1
L	28,684 ³	300	345	1.00	51.0	51.0	51.1	0.1
М	29,951 ³	215	175	1.50	66.9	66.9	67.1	0.2
¹ East share and								
² Eeet above confluence	with Mino Brock							
³ Feet above mouth								
FEDERAL EM								
		II AGLINUI					TA	
					FLUUI	JWAT DA		
		T, INJ						
3 (ALL	JURISDICHO	NS)	M	IANASQUA	AN RIVER TR MATA	RIBUTARY (C – MARL E Ek	BROOK –

						BASE F	LOOD		
FLOODING SOU	JRCE		FLOODWA	Y	l v	ATER-SURFAC FEET N	CE ELEVATION		
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Matchaponix Brook			1						
А	581	350	2,205	1.20	56.2	56.2	56.4	0.2	
В	1,531'	730	3,070	0.70	56.2	56.2	56.4	0.2	
C	2,112	510	2,935	0.70	56.9	56.9	57.0	0.1	
D	6,072'	500	920	2.40	58.2	58.2	58.2	0.0	
McClees Creek									
Α	970 ²	178	497	2.50	8.1	7.2 ⁴	7.4	0.2	
B	2.510^{2}	111	259	4.80	9.5	9.5	9.6	0.1	
Ē	4.250^{2}	129	744	1.70	17.3	17.3	17.4	0.1	
D D	5.340 ²	244	623	2.00	247	24.7	24.7	0.0	
F	6 235 ²	163	843	1 00	27.8	27.8	27.0	0.0	
E	7 505 ²	170	271	2.20	27.0	27.0	27.0	0.0	
	7,000 9,605 ²	110	274	2.20	32.4	32.4	32.0		
G	0,095	110	374	1.70	34.1	34.1	34.3	0.2	
H	9,555	284	1,156	0.50	39.1	39.1	39.2	0.1	
McGellairds Brook									
А	2,114 ³	189	360	4.18	61.1	61.1	61.1	0.0	
В	2,399 ³	180	373	4.16	62.0	62.0	62.0	0.0	
С	$2,469^3$	188	759	2.01	62.6	62.6	62.6	0.0	
D	3,314 ³	350	968	1.60	63.1	63.1	63.1	0.0	
Е	4.277^{3}	300	1,480	1.00	63.7	63.7	63.7	0.0	
F	5.650^{3}	400	1.310	1.10	65.4	65.4	65.6	0.2	
G	7,286 ³	240	415	3.60	66.9	66.9	66.9	0.0	
н	8 290 ³	515	1 030	1 10	68.3	68.3	68.3	0.0	
1	9,557 ³	175	720	1.10	71 1	71 1	71 1	0.0	
, ,	12 1443	510	775	1.00	70.7	707	707	0.0	
ĸ	12,144 12,778 ³	145	80	6.70	73.4	73.4	73.4	0.0	
¹ Feet above county boundary ² Feet above Cooper Road (up ³ Feet above confluence with M ⁴ Elevation computed without co	stream face) atchaponix Brook onsideration of back	water effects	from Navesink	l		<u> </u>	<u> </u>	<u> </u>	
FEDERAL EMERGE		T AGENCY							
					FI OOI		ТА		
		I LOODWAI DAIA							
(ALL JU	RISDICTIO	NS)		MATCH	APONIX BRO	DOK – MCC	CLEES CRE	EK –	
5 Ì					MCGELL	AIRDS BR	OOK		

I (AL	L JURISDICTIC	DNS)		MCGELLAIRDS BROOK –					
FEDERAL MON	FEDERAL EMERGENCY MANAGEMENT AGENCY				FLOOI	OWAY DA	ТА		
Feet above confluer Feet above confluer Width / width within	nce with Matchaponix Brook nce with South Branch Meted county boundary	econk River							
lorth Branch A B	10,195 ² 11,025 ²	157/80 ³ 118/50 ³	563 557	2.10 2.00	16.6 18.6	16.6 18.6	16.8 18.8	0.2 0.2	
letedeconk River									
AF	29,295 ¹	34	129	2.40	113.0	113.0	113.2	0.2	
AE	29.2651	34	122	2.50	112.9	112.9	112.9	0.0	
	20,703 29,215 ¹	23	50	6.20	112.3	112.3	112.3	0.0	
	20,210 29,705 ¹	40	102	3.20	1109.3	110 7	110 7	0.2	
		101	305	1.00	109.2	109.2	109.4	0.2	
Ζ	26,530	155	5/4	0.60	108.9	108.9	109.1	0.2	
Y -		52	174	1.90	108.8	108.8	109.0	0.2	
Х	26,150	13	62	5.40	108.3	108.3	108.5	0.2	
W	25,975	13	49	6.90	107.3	107.3	107.5	0.2	
V	25,945	44	104	3.20	107.3	107.3	107.5	0.2	
U	24,735	28	54	6.20	101.5	101.5	101.7	0.2	
Т	23,971 ¹	155	315	1.70	100.8	100.8	100.8	0.0	
S	22,070 ¹	205	475	1.10	97.6	97.6	97.7	0.1	
R	20,750 ¹	170	180	3.00	92.4	92.4	92.4	0.0	
Q	19,853 ¹	250	565	1.00	90.7	90.7	90.7	0.0	
P	19.114 ¹	290	334	1.60	89.4	89.4	89.4	0.0	
0	18.374 ¹	320	385	1.40	87.2	87.2	87.3	0.1	
N	16,843 ¹	210	715	0.70	83.7	83.7	83.7	0.0	
<u>د</u> M	14,070 15.046 ¹	160	225	3.60	91.4	91 A	91 /		
continued)	44.0701	100	140	2.00	77.4	77.4	77 4		
CROSS SECT	TION DISTANCE	WIDTH (FEET)	AREA (SQUARE FEET)	VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREAS	
×			SECTION	MEAN			Г		
						(FEET N	IAVD)		
FLOOD	ING SOURCE		FLOODWA	Y	l v	ATER-SURFAC			

METEDECONK RIVER NORTH BRANCH

FLOODING SOU	RCE		FLOODWA	Y	V	BASE F VATER-SURFAC (FEET N	LOOD CE ELEVATION NAVD)	
CROSS SECTION	DISTANCE ¹	WIDTH ² (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Metedeconk River North Branch (continued)								
C D E F G H I J K L M N O P Q R S T U V V W X Y Z AA	13,120 14,345 15,450 15,480 17,545 18,790 19,810 20,585 21,440 22,020 22,325 24,125 25,125 26,285 27,110 28,130 29,300 29,330 30,060 30,090 31,660 32,590 33,480 34,520	433/400 371/275 28/23 97/70 182/105 184/160 141/95 173/60 219/200 136/65 74/25 81/55 292/215 166/140 74/53 363/310 231/195 45/20 38/20 48/40 207/105 113/90 240/205 188/145 234/70	1,985 1,613 252 418 757 797 657 689 828 493 519 348 348 348 348 348 348 348 348 348 348	$\begin{array}{c} 0.60\\ 0.60\\ 3.70\\ 2.20\\ 1.20\\ 1.20\\ 1.40\\ 1.30\\ 1.10\\ 1.90\\ 1.80\\ 2.60\\ 0.60\\ 1.10\\ 2.50\\ 1.00\\ 1.40\\ 3.40\\ 4.20\\ 2.10\\ 0.90\\ 1.60\\ 1.00\\ 1.30\\ 0.90\\ \end{array}$	$\begin{array}{c} 21.0\\ 21.8\\ 23.0\\ 23.0\\ 25.6\\ 26.7\\ 27.8\\ 28.8\\ 30.1\\ 31.0\\ 31.9\\ 35.2\\ 35.8\\ 36.8\\ 37.7\\ 38.9\\ 40.4\\ 40.5\\ 42.2\\ 42.2\\ 43.7\\ 44.8\\ 45.9\\ 47.0\\ \end{array}$	$\begin{array}{c} 21.0\\ 21.8\\ 23.0\\ 23.0\\ 25.6\\ 26.7\\ 27.8\\ 28.8\\ 30.1\\ 31.0\\ 31.9\\ 35.2\\ 35.8\\ 36.8\\ 37.7\\ 38.9\\ 40.4\\ 40.5\\ 42.2\\ 42.2\\ 42.2\\ 43.7\\ 44.8\\ 45.9\\ 47.0\\ \end{array}$	$\begin{array}{c} 21.2\\ 22.0\\ 23.1\\ 23.2\\ 25.7\\ 26.9\\ 28.0\\ 28.9\\ 30.3\\ 31.2\\ 32.1\\ 32.1\\ 32.1\\ 35.4\\ 36.0\\ 36.9\\ 37.8\\ 39.0\\ 40.4\\ 40.5\\ 42.4\\ 42.4\\ 43.9\\ 45.0\\ 46.1\\ 47.2\\ \end{array}$	$\begin{array}{c} 0.2 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\$
FEDERAL EMERGEN	FEDERAL EMERGENCY MANAGEMENT AGENCY				FLOOI	OWAY DA	TA	
(ALL JUI	RISDICTIO	NS)		METE	DECONK R			NCH

FLOODING SOL	JRCE		FLOODWA	Y	V	BASE F VATER-SURFAC (FEET N	LOOD CE ELEVATION NAVD)	
CROSS SECTION	DISTANCE ¹	WIDTH ² (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Metedeconk River North Branch								
	13 800	140/65	521	1 70	40.2	10.2	101	0.2
AB	43,000	140/05	240	1.70	40.2	40.Z	40.4	0.2
AC	43,850	45/20	348	2.00	51.4	51.4	51.0	0.2
AD	45,170	40/25	241	3.70	51.4	51.4	51.6	0.2
AE	46,250	125/120	494	1.80	52.3	52.3	52.5	0.2
AF	47,300	213/130	913	1.00	53.8	53.8	54.0	0.2
AG	48,355	417/360	1,723	0.50	54.5	54.5	54.7	0.2
AH	49,300	221/190	850	1.00	55.4	55.4	55.6	0.2
Al	50,250	295/185	1,187	0.70	56.4	56.4	56.5	0.1
AJ	51,115	286/230	1,179	0.80	57.2	57.2	57.4	0.2
AK	51,950	134/110	735	1.20	58.0	58.0	58.2	0.2
AL	54,425	181/145	1,145	0.80	58.1	58.1	58.3	0.2
AM	55,530	157/95	686	1.30	58.4	58.4	58.6	0.2
AN	56,670	95/85	381	1.10	59.5	59.5	59.6	0.1
AO	57,770	300/280	1,001	0.80	61.1	61.1	61.3	0.2
AP	58,570	154/130	661	1.30	62.2	62.2	62.4	0.2
AQ	59,400	231/191	557	1.50	63.6	63.6	63.8	0.2
AR	43,800	330/280	1,053	0.80	65.4	65.4	65.5	0.1
AS	43,850	321/261	1,147	0.70	66.6	66.6	66.8	0.2
AT	45,170	452/250	1,798	0.50	67.6	67.6	67.8	0.2
AU	46.250	125/55	878	1.00	68.8	68.8	69.0	0.2
AV	47.300	152/60	525	1.50	69.8	69.8	70.0	0.2
AW	48.355	166/43	693	1.10	71.1	71.1	71.3	0.2
AX	49,300	190/160	609	1.30	72.4	72.4	72.5	0.1
AY	50,250	180/70	650	1 20	73.5	73.5	73.5	0.1
AZ	51,115	131/58	569	1.40	74.6	74.6	74.6	0.0
Feet above confluence with S	outh Branch Metede	conk River			<u> </u>	<u> </u>	<u> </u>	
wider / wider within county bo	unual y							
FEDERAL EMERGE		IT AGENCY					Τ Λ	
MONMOU			FLOOI					
(ALL JURISDICTIONS)				METE	DECONK R	IVER NO		NCH

FLOODING SOL	JRCE		FLOODWA	Y	V	BASE F VATER-SURFAC (FEET N	LOOD CE ELEVATION NAVD)			
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
Metedeconk River North Branch (continued)										
RA	50 065 ¹	192/1203	617	1 20	75.4	75 4	75.5			
BB	60 660 ¹	106/100 ³	910	1.30	10.4	10.4	/5.5	0.1		
BC	61,000	190/100	019	1.00	70.0	76.6	/6./	0.1		
	62,000	100/00	809	0.90			77.8	0.1		
BU	02,000 64.505 ¹	07/53	342	2.30	/8.5	78.5	/8.6	0.1		
DE	04,000	97/57	398	1.70	80.0	80.0	80.2	0.2		
BF	65,385	424/349	1,017	0.70	80.6	80.6	80.8	0.2		
BG	00,095	402/240	1,349	0.50	81.7	81.7	81.8	0.1		
BH	67,700	178/68	1,012	0.70	84.6	84.6	84.7	0.1		
BI	68,785	99/39	283	2.10	85.5	85.5	85.7	0.2		
Bl	69,335	125/40	665	0.90	87.6	87.6	87.8	0.2		
BK	70,785	212/142°	890	0.70	88.4	88.4	88.6	0.2		
BL	71,815	194/100°	870	0.70	89.3	89.3	89.5	0.2		
BM	72,815	90/20 [°]	476	1.30	90.1	90.1	90.2	0.1		
BN	74,495	40/20 [°]	247	2.30	91.2	91.2	91.4	0.2		
BO	75,700	78/53 ³	424	1.30	92.1	92.1	92.3	0.2		
Militora Brook	1.0002									
A	1,320	285	470	1.20	69.8	69.8	69.8	0.0		
В	2,957	325	500	1.20	74.4	74.4	74.5	0.1		
C	3,5902	230	140	4.30	75.1	75.1	75.1	0.0		
D	4,277	250	615	1.00	76.2	76.2	76.3	0.1		
E	6,125	180	370	1.60	77.3	77.3	77.3	0.0		
F	7,022	180	180	3.30	80.3	80.3	80.3	0.0		
G	8,078 ²	325	385	1.50	85.4	85.4	85.4	0.0		
Н	9,082 ²	280	610	1.00	86.7	86.7	86.7	0.0		
Feet above confluence with S Feet above confluence with M Width / width within county bo	l outh Branch Metede cGellairds Brook undary	conk River	1			L				
FEDERAL EMERGE	NCY MANAGEMEN	IT AGENCY								
MONMOUTH COUNTY, NJ					FLUUL	JWAY DA	IA			
(ALL JURISDICTIONS)				METE	DECONK RI	VER NORT	H BRANCH			
					MILFO	ORD BROO	K			

FLOODING SOUF	RCE		FLOODWA	Y	V	BASE F VATER-SURFAC (FEET N	LOOD CE ELEVATION NAVD)				
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE			
Vilford Brook											
I J K L M N O P Q R S S T U V V W X Y Z AA AB AC AD AE AF AG	$\begin{array}{c} 10,560\\ 11,352\\ 13,306\\ 14,256\\ 15,629\\ 16,632\\ 18,480\\ 19,378\\ 19,484\\ 20,223\\ 21,015\\ 21,912\\ 22,916\\ 23,391\\ 23,496\\ 24,130\\ 25,133\\ 25,239\\ 25,820\\ 26,136\\ 26,823\\ 28,090\\ 28,512\\ 28,882\\ 29,252\\ \end{array}$	210 225 205 210 240 255 210 60 160 90 370 150 240 360 450 860 200 210 450 450 470 400 370 150 130 180	$\begin{array}{c} 145\\ 395\\ 265\\ 190\\ 405\\ 170\\ 320\\ 55\\ 210\\ 200\\ 405\\ 100\\ 255\\ 180\\ 495\\ 1,155\\ 170\\ 365\\ 60\\ 825\\ 2,095\\ 85\\ 80\\ 50\\ 160\\ \end{array}$	$\begin{array}{c} 4.00\\ 1.50\\ 2.20\\ 2.10\\ 1.00\\ 2.30\\ 1.20\\ 7.30\\ 1.90\\ 2.00\\ 1.00\\ 4.10\\ 1.60\\ 2.20\\ 0.80\\ 0.30\\ 2.40\\ 1.10\\ 6.60\\ 0.50\\ 0.10\\ 1.60\\ 1.80\\ 2.70\\ 2.50\end{array}$	90.0 92.0 97.8 100.1 103.7 109.9 113.8 115.6 116.8 119.3 121.3 123.2 125.4 129.1 129.6 129.8 131.1 133.2 139.4 142.9 142.9 142.9 142.9 142.9 143.3 146.3 149.4 150.4	90.0 92.0 97.8 100.1 103.7 109.9 113.8 115.6 116.8 119.3 121.3 123.2 125.4 129.1 129.6 129.8 131.1 133.2 139.4 142.9 142.9 142.9 142.9 143.3 146.3 149.4 150.4	90.0 92.0 97.9 100.1 103.8 109.9 113.8 115.6 116.8 119.3 121.3 123.2 125.4 129.2 129.7 129.8 131.1 133.2 139.4 143.0 143.0 143.0 143.4 146.3 149.4 150.5	$\begin{array}{c} 0.0\\ 0.0\\ 0.1\\ 0.0\\ 0.1\\ 0.0\\ 0.0\\ 0.0\\$			
Feet above confluence with Mc	Gellairds Brook										
FEDERAL EMERGEN	CY MANAGEMEN	T AGENCY		FLOODWAY DATA							
(ALL JUR	(ALL JURISDICTIONS)				MILFORD BROOK						

FLOODING SOL	IRCE		FLOODWA	Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)					
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
Millstone River			· · · · · · · · · · · · · · · · · · ·							
А	308,020 ¹	260	794	2.00	118.6	118.6	118.7	0.1		
В	310,200 ¹	190	570	2.00	122.6	122.6	122.8	0.2		
С	312,530 ¹	354	902	1.30	126.1	126.1	126.3	0.2		
D	314,750 ¹	570	1,306	0.80	127.5	127.5	127.7	0.2		
E	317.100 ¹	280	801	1.10	133.1	133.1	133.3	0.2		
F	318.430 ¹	370	828	1.00	134.4	134.4	134.6	0.2		
G	$322\ 225^{1}$	152	199	3.60	142.9	142.9	143.0	0.1		
н	324,766 ¹	23	71	10.00	147.1	147.1	147.1	0.0		
	326 785 ¹	140	165	3 40	152.7	152.7	152.8	01		
; 1	328 885 ¹	167	346	1.60	157.1	157.1	157.3	0.2		
K	420,490 ¹	402	1,071	0.70	140.7	140.7	140.8	0.1		
Mine Brook										
Δ	1.000^{2}	102	417	3 70	41 7	41.7	41.9	0.2		
B	2.650^2	80	307	5.00	45.3	45.3	45.5	0.2		
C	$4 100^{2}$	114	580	2.60	40.3	49.3	49.4	0.1		
	4,100 4,500 ²	67	341	4.50	49.5	40.0	40.4	0.1		
	4,500	07	202	5.40	49.0	54.0	55 1	0.7		
	5,570 6.054 ²	70	203	2.40	59.7	59.7	59.7	0.2		
F	0,001	/9	44	3.50	50.7	50.7	50.7	0.0		
G	0,455 7,000 ²	132	318	4.80	59.1	09.1	59.1	0.0		
н	7,200	63	400	3.80	04.1	04.1	04.1	0.0		
1	7,750	105	667	2.30	64.4	04.4	04.0	0.2		
J	8,750-	82	284	3.70	65.6	65.6	65.8	0.2		
К	9,3002	71	219	4.80	67.4	67.4	67.6	0.2		
L	9,547	190	1,021	0.90	74.8	74.8	74.8	0.0		
M	$11,870^{2}$	133	308	3.00	76.1	76.1	76.2	0.1		
Feet above confluence with R Feet above confluence with Y	aritan River ellow Brook									
			1							
					FLOO	DWAY DA	TA			
		NS)								
				MILLSTONE RIVER – MINE BROOK						

FLOODING SOU	JRCE		FLOODWA	Y	v	BASE F VATER-SURFAC FEET N	LOOD CE ELEVATION	
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Mine Brook								
(continued)								
0	13,720	50	125	7.30	80.4	80.4	80.4	0.0
Р	15,540	66	183	5.00	84.4	84.4	84.6	0.2
Q	16,500	88	292	3.10	87.3	87.3	87.5	0.2
R	17,300'	118	310	2.90	88.7	88.7	88.9	0.2
/iry Bog Brook								
A	600 ¹	26	53	7.20	66.9	66.9	67.0	0.1
В	1.300 ¹	26	68	5.60	72.9	72.9	73.0	0.1
С	1.500 ¹	40	141	2.70	75.2	75.2	75.2	0.0
D	1.770 ¹	61	124	3.10	75.5	75.5	75.5	0.0
Ē	2.080 ¹	184	990	0.40	79.1	79.1	79.1	0.0
F	$2,340^{1}$	184	872	0.40	79.1	79.1	79.1	0.0
G	$2,550^{1}$	191	1 024	0.40	83.3	83.3	83.3	0.0
н	3.0401	160	742	0.40	83.3	83.3	83.3	0.0
i j	3,530 ¹	49	166	2.30	83.3	83.3	83.3	0.0
Mohingson Brook								
Δ	113 ²	117	605	1.00	10.5	2 13	26	0.2
B	625 ²	170	1 015	1.30	10.5	3.4 8.0 ³	3.0	0.2
C	1 165 ²	120	842	1.50	10.0	16.1	0.9	0.0
Ď	1.6312	116	042	1.00	21.1	21.1	21.1	0.2
	2 710 ²	266	3 936	0.20	21.1	21.1	21.1	0.0
E E	3.077 ²	200	740	0.30	21.1		21.3	0.2
G	3,0772	409	6.079	0.40	20.0 25.5	20.0	20.0	0.0
с ц	1 709 ²	430	1 150	0.00	20.0 25 F	20.0	20.0	0.0
• •	5 102 ²	111	1,100	0.20	20.0 25.5	20.0	20.0	0.0
-			4,020	0.10	20.0	20.0	20.0	0.0
Feet above confluence with Ye Feet above confluence with M	ellow Brook atawan Creek							
Elevation computed without of	onsideration of effect	s of tidal floor	ling from Rarits	an Bay				
_iordion computed without of		5 of tidal 1000	ang nom rana	an bay				

۲L	FEDERAL EMERGENCY MANAGEMENT AGENC
BLE 12	MONMOUTH COUNTY, NJ (ALL JURISDICTIONS)

FLOODWAY DATA

MINE BROOK – MIRY BOG BROOK – MOHINGSON BROOK

	(ALL JUR	NS)		MOHINGSON BROOK – MONASCUNK CREEK					
2	FEDERAL EMERGEN					FLOOI	DWAY DA	TA	
¹ Fee ² Fee	at above confluence with Mat above confluence with Flat	awan Creek Creek							
	······································								
	G	5,115 ²	73	245	2.10	43.4	43.4	43.5	0.1
	E F	2,810 ² 4,070 ²	100	243 520	2.40	33.7 42.6	42.6	33.9 42.6	0.2
	D	1,950 ²	100	144	4.00	29.7	29.7	29.8	0.1
	В С	1,400 ²	18	132	4.40	26.8	26.8	26.9	0.1
	A	450 ²	61	169	3.40	19.6	19.6	19.7	0.1
Mona	ascunk Creek						10.0		
	X	13,623	60	234	2.70	77.5	//.5	//.6	0.1
	W	13,2321	24	187	3.40	77.3	77.3	77.3	0.0
	V	12,585 ¹	33	272	3.00	75.7	75.7	75.7	0.0
	U	12,220 ¹	58	157	5.20	65.3	65.3	65.3	0.0
	S T	11,561 11,887 ¹	33	152	2.30	53.9	53.9	53.9	
	R	11,221	36	156	5.20	53.4	53.4	53.4	0.0
	Q	10,862 ¹	33	91	8.90	48.0	48.0	48.0	0.0
	P	9,932 ¹	124	273	3.60	45.5	45.5	45.7	0.2
	N O	9,002 9,580 ¹	72	338	2.90	41.8	41.8	41.8	0.0
	M	8,630 ⁻	40	194	6.0	34.0	34.0	34.0	0.0
	L	7,732	29	106	11.0	26.5	26.5	26.5	0.0
	К	6,932 ¹	156	402	1.70	25.5	25.5	25.5	0.0
(cont	J	5.337 ¹	188	1.377	0.20	25.5	25.5	25.5	0.0
Mohi	ngson Brook								
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
							(FEET N	NAVD)	
	FLOODING SOUR	CE		FLOODWA	Y	N N	ATER-SURFAC	E ELEVATION	

FLOODING SO	URCE		FLOODWA	Υ	v	BASE F VATER-SURFAC (FEET N	LOOD CE ELEVATION NAVD)			
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
/usquash Brook			/							
A	200 ¹	*	*	*	9.0	*	*	*		
В	800 ¹	*	*	*	9.0	*	*	*		
С	1,550 ¹	*	*	*	9.0	*	*	*		
D	2,400	*	*	*	14.0	*	*	*		
E	3,000 ¹	*	*	*	18.3	*	*	*		
F	4,450 ¹	*	*	*	38.5	*	*	*		
G	4,900 ¹	*	*	*	53.2	*	*	*		
Н	5,500 ¹	291	2303	0.1	53.2	53.2	53.4	0.2		
Ţ	7,425 ¹	23	61	10.4	57.7	57.7	57.9	0.2		
lut Swamp Brook										
A	0 ²	318	614	2.70	16.0	16.0	16.1	0.1		
В	895 ²	240	894	0.90	16.7	16.7	16.8	0.1		
Ċ	1.835^{2}	80	259	3.20	18.0	18.0	18.1	0.1		
D	2.185^{2}	114	359	2.30	19.1	19.1	19.3	0.2		
F	2.645^{2}	201	1 315	0.60	24.7	24.7	24.8	0.1		
F	4.395^{2}	69	237	3.50	25.6	25.6	25.8	0.2		
, G	5 185 ²	100	606	1 30	20.0	20.0	29.5	0.2		
ы Ц	6 405 ²	73	163	3 70	20.0	31.3	20.0	0.0		
11	7 025 ²	120	216	2.60	40.2	40.2	40.4	0.0		
i i	7,925 9,405 ²	120	210	2.00	40.2	40.2	40.4	0.2		
3	0,490	190	410	1.30	40.2	40.7	40.0	0.1		
L	9,175	192	398	1.30	49.3	49.3	49.4	0.1		
M	9,595	101	323	1.60	50.0	50.0	50.2	0.2		
arkers Creek	a (aa1	050	0.000	0.50		5 4 ³	5.0			
A B	6,420 ⁻ 7,970 ¹	465	2,893	0.50	8.0	5.1 5.1 ³	5.3	0.2		
Feet above mouth	tudy (limit of detailed	study is appr	* Data not	available	andy Road)					
Elevation computed without of	consideration of back	water effects	from Shrewsbu	ıry River	- , 					
FEDERAL EMERG		IT AGENCY			51.001		-			
MONMOU		FLOODWAY DATA								
(ALL JU	IRISDICTIO	NS)		MUSQL	ASH BROO	K – NUT SV	VAMP BRO	ОК –		
				PARKERS CREEK						

ç	· · · · · · · · · · · · · · · · · · ·					<u> </u>	BAGE E				
	FLOODING SOUF	RCE		FLOODWA	Y	Ŵ	ATER-SURFAC (FEET N	COOD CE ELEVATION JAVD)			
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
Par (co	kers Creek ntinued)										
Pa	C D E F G H I J K L M K kers Creek North Branch A B C D E	$11,250^{1}$ $12,900^{1}$ $13,995^{1}$ $14,520^{1}$ $14,950^{1}$ $15,320^{1}$ $15,610^{1}$ $16,020^{1}$ $16,652^{1}$ $17,220^{1}$ 110^{2} $2,170^{2}$ $3,900^{2}$ $4,020^{2}$ $4,420^{2}$	294 186 99 183 137 39 41 216 124 118 156 197 187 48 45 23	1,116 672 177 351 265 127 164 574 216 224 349 1,008 456 124 137 61	$\begin{array}{c} 1.20\\ 0.80\\ 3.00\\ 1.50\\ 2.00\\ 4.30\\ 3.30\\ 0.90\\ 2.50\\ 2.40\\ 1.50\\ \end{array}$	8.0 8.0 8.0 8.7 9.9 10.8 12.5 12.7 13.6 14.6 8.2 8.2 8.2 12.3 12.6 14.8	6.2^4 6.3^4 6.6^4 8.0 8.7 9.9 10.8 12.5 12.7 13.6 14.6 8.2^5 8.2^5 12.3 12.6 14.8	6.4 6.5 6.8 8.2 8.9 10.1 11.0 12.6 12.8 13.8 14.8 8.4 8.4 8.4 12.5 12.8 14.8	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2		
Pin	e Brook 1 A B C D E F	$300^{3} \\ 525^{3} \\ 1,705^{3} \\ 2,225^{3} \\ 3,100^{3} \\ 3,700^{3} \\ \end{array}$	110 240 242 345 350 265	473 612 882 778 1,622 1,310	3.90 3.00 2.10 2.40 1.10 1.40	10.6 10.6 10.6 10.6 10.6 10.6 10.6	2.1^{6} 2.4^{6} 3.2^{6} 3.5^{6} 6.5^{6} 6.5^{6}	2.3 2.6 3.4 3.7 6.7 6.7	0.2 0.2 0.2 0.2 0.2 0.2 0.2		
¹ F(² F(³ F(eet above mouth eet above confluence with Par eet above confluence with Swi	kers Creek imming River		⁴ Elevation o ⁵ Elevation o ⁶ Elevation o	computed without computed without computed without	consideration of bac consideration of bac consideration of bac	kwater effects fro kwater effects fro kwater effects fro	m Shrewsbury Riv m Parkers Creek m	er		
TABLI	FEDERAL EMERGEN	CY MANAGEMEN	it agency Y, NJ	FLOODWAY DATA							
E 12	(ALL JUR	RISDICTIO	NS)	PARKERS CREEK – PARKERS CREEK, NORTH BRANCH – PINE BROOK 1							

FLOODING SOURCE		FLOODWAY			BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)			
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Pine Brook 1								
(continued)						2		
G	4,500	314	1,280	1.20	10.6	6.6	6.8	0.2
Н	5,500	311	1,177	1.60	10.6	6.8	7.0	0.2
1	6,000	215	877	2.10	10.6	6.9	7.1	0.2
J	6,500	124	709	2.60	10.6	7.1	7.3	0.2
К	6,730	120	715	2.60	10.6	7.3	7.5	0.2
L	7,000	140	880	2.10	10.6	7.4	7.6	0.2
Μ	7,500	257	1,570	1.20	10.6	7.5°	7.7	0.2
N	8,500	147	323	5.70	10.6	8.1°	8.2	0.1
0	9,750	161	518	3.50	11.8	11.8	12.0	0.2
Р	10,500	245	669	2.70	13.1	13.1	13.3	0.2
Q	11,300	166	432	4.20	14.7	14.7	14.9	0.2
R	12,303	154	1,090	1.70	33.1	33.1	33.1	0.0
S	12,520	48	304	6.00	33.4	33.4	33.4	0.0
Т	13,300	48	297	6.20	35.5	35.5	35.7	0.2
U	13,700	48	316	5.80	36.6	36.6	36.8	0.2
V	14,920	48	300	6.10	40.3	40.3	40.5	0.2
W	15,500	48	288	6.30	41.9	41.9	42.1	0.2
Х	16,620 ¹	102	643	2.80	44.1	44.1	44.3	0.2
Pine Brook 2								
А	1,056 ²	160	570	1.90	56.7	56.7	56.9	0.2
В	2,587 ²	350	845	1.30	60.5	60.5	60.5	0.0
С	3,2212	155	550	2.00	62.4	62.4	62.4	0.0
D	4,277 ²	170	200	4.40	64.6	64.6	64.6	0.0
E	5,280 ²	300	730	1.20	66.8	66.8	66.8	0.0
F	6,811 ²	210	290	3.10	69.5	69.5	69.5	0.0

12

² Feet above confluence with Matchaponix Brook
 ³ Elevation computed without consideration of backwater effects from Swimming River

7	FEDERAL EMERGENCY MANAGEMENT AGENCY
BL	MONMOUTH COUNTY, NJ
im	

FLOODWAY DATA

MONMOUTH COUNTY, NJ (ALL JURISDICTIONS)

PINE BROOK 1 – PINE BROOK 2

	FLOODING SOURCE			FLOODWAY			BASE FLOOD WATER-SURFACE ELEVATION (EEET NAVD)			
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Pine (co	e Brook 2 htinued)				c					
Pin	G H J K L M N e Brook 2 Tributary C A B C	9,240 ¹ 11,246 ¹ 12,778 ¹ 14,203 ¹ 15,787 ¹ 19,166 ¹ 20,223 ¹ 21,120 ¹ 211 ² 1,584 ² 1,742 ²	200 230 335 195 250 410 200 520 20 15 100	640 640 615 360 610 980 150 385 120 40 315	1.40 1.00 1.80 1.00 0.90 3.40 1.30 1.30 3.80 0.50	75.6 82.1 85.4 87.9 93.5 102.2 107.7 113.4 77.6 77.8 83.7	75.6 82.1 85.4 87.9 93.5 102.2 107.7 113.4 77.6 77.8 83.7	75.7 82.1 85.4 87.9 93.5 102.3 107.7 113.4 77.6 77.9 83.7	0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0	
Pol	D ypod Brook	2,482 ²	100	155	1.00	84.0	84.0	84.1	0.1	
	A B	170 ³ 815 ³	123 41	555 151	0.50 1.70	57.6 57.6	57.6 57.6	57.8 57.8	0.2 0.2	
Pol	y Pond Brook A B C D	$100^{4} \\ 1,000^{4} \\ 2,000^{4} \\ 3,500^{4}$	431 446 669 206	1,581 2,453 3,244 477	0.20 0.10 0.10 0.80	17.0 17.0 17.0 17.0 17.0	17.0 17.0 17.0 17.0	17.2 17.2 17.2 17.2 17.2	0.2 0.2 0.2 0.2	
¹ Fe ² Fe ³ Fe ⁴ Fe	¹ Feet above confluence with Matchaponix Brook ² Feet above confluence with Pine Brook 2 ³ Feet above confluence with Groundhog Brook ⁴ Feet above limit of detailed study (limit of detailed study is approximately 950 feet below Route 71)									
TABLI	FEDERAL EMERGENCY MANAGEMENT AGENCY MONMOUTH COUNTY, NJ (ALL JURISDICTIONS)				FLOODWAY DATA					
12					PINE BROOK 2 – PINE BROOK 2 TRIBUTARY C – POLY POND BROOK – POLYPOD BROOK					
FLOODING SOU		FLOODWA	Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)						
--------------------------	---------------------	-----------------	-------------------------------------	--	------------	---------------------	------------------	----------		
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
Poplar Brook										
Α	490 ¹	25	127	10.20	84	84	86	0.2		
В	1.665^{1}	236	1 523	0.80	13.6	13.6	13.8	0.2		
С	2.370^{1}	200	986	1.30	13.7	13.7	13.0	0.2		
D	3,305 ¹	230	689	1.90	14.1	14.1	14.3	0.2		
E	4,080 ¹	155	715	1.80	18.1	18.1	18.2	0.1		
F	6.630^{1}	280	1.164	1.10	27.6	27.6	27.7	0.1		
G	7,110 ¹	260	1.892	0.50	27.6	27.6	27.8	0.1		
Н	8,190 ¹	140	800	1.20	27.6	27.6	27.8	0.2		
I	9,600 ¹	80	284	3.40	27.7	27.7	27.9	0.2		
J	10,360 ¹	440	823	1.20	30.1	30.1	30.2	0.1		
К	11,600 ¹	180	338	2.80	30.7	30.7	30.9	0.1		
L	12,565 ¹	260	371	2.10	33.8	33.8	33.9	0.1		
Μ	13,055 ¹	200	445	1.70	34.1	34.1	34.3	0.1		
Ν	14,870 ¹	45	101	7.60	36.7	36.7	36.7	0.0		
0	15,140 ¹	37	94	8.10	38.7	38.7	38.7	0.0		
Р	16,550 ¹	190	559	1.10	45.2	45.2	45.4	0.2		
Q	17,600 ¹	23	101	5.90	47.1	47.1	47.3	0.2		
R	18,430 ¹	50	174	3.40	50.1	50.1	50.2	0.1		
Poplar Brook Tributary 1										
A	750 ²	11	23	4.80	27.6	25.4 ³	25.4	0.0		
В	1,650 ²	24	65	1.70	28.6	28.6	28.8	0.2		
Poplar Brook Tributary 2										
A	1,000 ²	7	16	3.60	35.8	35.8	35.8	0.0		
В	2,150 ²	9	16	3.60	42.2	42.2	42.2	0.0		

¹ Feet above Atlantic Ocean ² Feet above confluence with Poplar Brook ³ Elevation computed without consideration of backwater effects from Poplar Brook

ΤA	FEDERAL EMERGENCY MANAGEMENT AGENCY				
BLE 12	MONMOUTH COUNTY, NJ				
	(ALL JURISDICTIONS)	POPLAR BROOK – POPLAR BROOK TRIBUTARY 1 – POPLAR BROOK TRIBUTARY 2			

FLOODING SOU	IRCE		FLOODWA	FLOODWAY		BASE FLOOD WATER-SURFACE ELEVATION					
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE			
Poplar Brook Tributary 3	1		/								
A B	200 ¹ 1,200 ¹	100 15	4,522 33	0.00 5.90	34.8 37.1	34.8 37.1	35.0 37.1	0.2 0.0			
Poricy Brook											
A	1.800^{2}	371	5 470	0.20	24.2	24.2	24.0				
B	2820^2	*	4 710	0.20	24.2	24.2	24.2	0.0			
C	2,020	*	4,719	0.20	24.2	24.2	24.2	0.0			
	5,900 5,000 ²	200	4,108	0.20	24.2	24.2	24.2	0.0			
	5,200	320	4,563	0.20	24.2	24.2	24.2	0.0			
E	6,760	263	2,281	0.30	24.2	24.2	24.2	0.0			
F	8,4202	196	613	1.10	24.5	24.5	24.5	0.0			
G	9,4902	92	224	3.10	26.3	26.3	26.5	0.2			
Н	10,470 ²	119	219	2.90	32.9	32.9	33.0	0.1			
I	11,200 ²	142	206	3.10	39.3	39.3	39.5	0.2			
J	11,610 ²	139	255	2.50	43.8	43.8	44.0	0.2			
К	12.200^2	164	589	1.00	47.2	47.2	47.4	0.2			
L	13.000^{2}	120	244	2 40	50.0	50.0	50.2	0.2			
M	13.825^2	45	117	5 10	54.1	54.1	54.2	0.2			
N	$14,260^2$	40	130	4.10	57.2	57.0	54.5	0.2			
0	15,000 ²	17	77	7.40	62.7	62.7	62.8	0.0 0.1			
Ramanessin Brook											
Δ	1 7603	540	1 705	1.00	44.0	44.0					
	1,700	049	1,785	1.90	41.6	41.6	41.8	0.2			
В	2,000	400	1,4/3	2.30	42.7	42.7	42.7	0.0			
C	3,050	224	865	2.30	43.3	43.3	43.5	0.2			
D	4,820°	224	544	3.70	46.4	46.4	46.4	0.0			
E	6,600 [°]	179	544	3.70	52.0	52.0	52.2	0.2			
F	8,520 [°]	127	438	4.60	58.4	58.4	58.5	0.1			
G	8,860 ³	79	437	4.30	60.6	60.6	60.7	0.1			
Feet above confluence with Po	plar Brook				* Da	ata not available					
Feet above confluence with Wi	llow Brook										
FEDERAL EMERGEN	ICY MANAGEMEN	T AGENCY									
				FLOODWAY DATA							
MONMOUT	TH COUNT	Y, NJ									
(ALL JUF	RISDICTIO	NS)	F	POPLAR B	ROOK TRIB	UTARY 3 –	PORICY BI	ROOK –			
			RAMANESSIN BROOK								

FLOODING SO		FLOODWA	Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)				
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Ramanessin Brook								
(continued)								
Н	10,820	226	498	3.80	65.5	65.5	65.6	0.1
1	12,285	112	358	5.30	71.3	71.3	71.5	0.2
J	12,500	166	1,046	1.80	76.4	76.4	76.5	0.1
K	13,700 ¹	202	676	2.80	77.1	77.1	77.1	0.0
L	15,560 ¹	120	497	3.00	83.1	83.1	83.2	0.1
Μ	17,600 ¹	182	664	2.30	87.3	87.3	87.5	0.2
Ν	18,500 ¹	169	395	3.80	93.1	93.1	93.3	0.2
0	20,085 ¹	177	413	2.40	100.7	100.7	100.8	0.1
Р	20,900 ¹	110	375	2.70	102.5	102.5	102.6	0.1
Q	22,500 ¹	189	499	2.00	110.7	110.7	110.8	0.1
R	23,590 ¹	105	341	2.90	116.3	116.3	116.4	0.1
S	24,200 ¹	127	303	2.00	118.1	118.1	118.3	0.2
Т	25,185 ¹	130	253	2.50	125.6	125.6	125.8	0.2
Roberts Swamp Brook								
(Upstream Reach)								
A	300 ²	20	42	8.30	16.4	16.4	16.6	0.2
В	730 ²	22	58	6.10	20.3	20.3	20.5	0.2
С	1,080 ²	36	129	3.40	24.4	24.4	24.6	0.2
D	1,400 ²	72	138	3.70	24.9	24.9	25.1	0.2
E	2,000 ²	20	42	8.30	28.6	28.6	28.7	0.1
Rocky Brook								
(Downstream Reach)								
Ă Á	26,687 ³	162/118 ⁴	626	1.60	106.5	106.5	106.6	0.1
В	27,887 ³	450/360 ⁴	995	1.00	107.0	107.0	107.2	0.2
С	28,987 ¹	419/379 ⁴	1,064	0.90	107.4	107.4	107.6	0.2

² Feet above limit of detailed study (limit of detailed study is approximately 785 feet below Algonkin Trail)

³ Feet above county boundary
 ⁴ Width / Width within Monmouth County corporate limits

	FEDERAL EMERGENCY MANAGEMENT AGENCY	
B	MONMOUTH COUNTY, NJ	
E 12	(ALL JURISDICTIONS)	R

FLOODWAY DATA

AMENESSIN BROOK – ROBERTS SWAMP BROOK (UPSTREAM REACH) – ROCKY BROOK (DOWNSTREAM REACH)

12	(ALL JUR	ISDICTIO	NS)	3) ROCKY BROOK (DOWNSTREAM) – ROCKY BROOK (UPSTREAM) – SHARK RIVER							
TABLI	FEDERAL EMERGENO	CY MANAGEMEN	T AGENCY		FLOODWAY DATA						
² Feet 1 ³ Feet a ⁴ Width	from Perrineville Road above mouth h / width within Monmouth C	County boundary									
Feet	above county boundary	<u> </u>	5	Elevation comp	uted without con	sideration of backwa	ter effects from Sh	l nark River Estuary			
	0	13,355 ³	50	161	5.90	19.2	19.2	19.4	0.2		
	M	11,160° 12,350 ³	43 49	174	5.10	13.6	13.6	13.7	0.1		
	L	$10,600^3$	90	409	2.10	13.3	13.3	13.4	0.1		
	ĸ	9,780 ³	110	432	2.10	13.0	13.0	13.1	0.1		
	J	9.330^3	90	339	2.70	12.8	12.8	12.9	0.2		
	H	8,120 ⁻ 8,710 ³	50	160	6.30	10.2	10.2	10.4	0.2		
	G	7,400°	148	265	3.80	8.9	6.8°	7.0	0.2		
	F	6,530 ³	327	826	1.10	8.9	6.5 ⁵	6.6	0.1		
	E	5,100 ³	399	1,507	0.80	8.9	6.4 ⁵	6.5	0.1		
	D	4,600 ³	630	2,193	0.50	8.9	6.4 ⁵	6.5	0.1		
	c	3,230 ³	445	265	3.80	8.9	6.2 ⁵	6.3	0.1		
	В	$2,530^3$	435	690	1.40	8.9	5.2 ⁵	5.4	0.2		
Shark	River A	1.900 ³	130	554	1.80	8.9	4 9 ⁵	51	0.2		
	D	1,118	43	194	4.00	155.3	155.3	155.5	0.2		
	C	519 ²	192	505	1.50	148.5	148.5	148.7	0.2		
	B	-545 ²	100	399	2.00	146.8	146.8	146.8	0.0		
Rocky	Brook (Upstream Reach) A	-2,240 ²	243	796	1.00	141.1	141.1	141.3	0.2		
	E	30,637 ¹	525/435 ⁴	1,145	0.90	110.0	110.0	110.1	0.1		
Rocky) (continued) D	29,937 ¹	516/481 ⁴	755	1.30	109.4	109.4	109.4	0.0		
c	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
	FLOODING SOUR	CE		FLOODWA	Y	V	VATER-SURFAC	E ELEVATION			
í .			1				BASE F	LOOD			

FLOODING SO	URCE		FLOODWAY			BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)				
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
Shark River										
continued)										
P	14,100 ¹	92	326	2.80	22.1	22.1	22.3	0.2		
Q	15,600 ¹	95	265	3.30	23.8	23.8	24.0	0.2		
R	16,100 ¹	146	261	3.40	24.7	24.7	24.7	0.0		
S	16,720	131	322	2.80	25.8	25.8	26.0	0.2		
Т	17,600 ¹	59	180	5.20	27.2	27.2	27.4	0.2		
U	18,200 ¹	40	161	5.50	28.8	28.8	29.0	0.2		
V	18,660 ¹	30	137	6.50	29.5	29.5	29.7	0.2		
W	19,520 ¹	123	387	2.30	31.5	31.5	31.7	0.2		
X	20,050 ¹	30	104	8.50	32.0	32.0	32.0	0.0		
Y	20,460 ¹	59	238	3.70	33.5	33.5	33.7	0.2		
Z	20,850 ¹	53	201	4.60	35.1	35.1	35.3	0.2		
AA	21,600 ¹	36	156	3.90	36.4	36.4	36.6	0.2		
AB	22,900 ¹	30	115	5.20	38.6	38.6	38.8	0.2		
AC	24,400 ¹	30	131	4.50	42.1	42.1	42.2	0.1		
AD	25,980 ¹	30	109	5.50	45.1	45.1	45.3	0.2		
AE	27,480	24	75	8.00	49.0	49.0	49.2	0.2		
AF	30,185 ¹	19	48	6.40	55.8	55.8	56.0	0.2		
AG	30,665 ¹	24	69	4.50	57.9	57.9	57.9	0.0		
AH	31,255	21	44	7.00	59.6	59.6	59.8	0.2		
AI	33,493	30	90	3.40	67.5	67.5	67.6	0.1		
AJ	35,2851	17	40	7.60	72.8	72.8	72.9	0.1		
Shark River Tributary D										
Α	400 ²	34	47	6.80	35.1	35.1	35.3	0.2		
В	600 ²	169	340	0.90	36.7	36.7	36.9	0.2		
С	1,200 ²	90	67	4.70	40.3	40.3	40.3	0.0		

² Feet above confluence with Shark River

	FEDERAL EMERGENCY MANAGEMENT AGENCY	
ע	MONMOUTH COUNTY, NJ	
Π	(ALL IURISDICTIONS)	
N		сu

FLOODWAY DATA

BLE 12

SHARK RIVER – SHARK RIVER TRIBUTARY D

FLOODING SOU	RCE		FLOODWA	Y	v	BASE F VATER-SURFAC (FEET N	LOOD CE ELEVATION NAVD)	
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Shark River Tributary D								
D E F	1,800 ¹ 2,150 ¹ 2,410 ¹	56 50 24	58 54 49	5.50 5.90 7.70	51.6 57.8 64.1	51.6 57.8 64.1	51.7 57.8 64.3	0.1 0.0 0.2
Shark River Tributary E								
A B C D	500 ¹ 1,900 ¹ 2,800 ¹ 3,450 ¹	56 464 125 256	129 672 340 1,370	9.00 2.50 4.30 0.10	51.7 59.4 63.7 70.4	51.7 59.4 63.7 70.4	51.9 59.6 63.9 70.6	0.2 0.2 0.2 0.2
Still House Brook								
A B C D E	$1,056^{2} \\ 2,270^{2} \\ 3,432^{2} \\ 4,435^{2} \\ 6,600^{2}$	120 120 150 60 60	390 110 250 50 90	0.90 3.10 0.70 3.30 1.80	94.1 97.5 101.1 103.3 121.6	94.1 97.5 101.1 103.3 121.6	94.3 97.5 101.3 103.3 121.8	0.2 0.0 0.2 0.0 0.2
Swimming River								
A B C D E F G	$\begin{matrix} 0^{3} \\ 3,480^{3} \\ 7,180^{3} \\ 7,480^{3} \\ 11,780^{3} \\ 14,110^{3} \\ 14,550^{3} \end{matrix}$	170 639 1,085 250 434 483 566	1,930 5,926 6,703 3,088 9,247 7,706 7,896	5.80 1.90 1.40 3.10 1.00 1.20 1.20	8.1 9.7 10.9 11.0 21.8 21.9 21.9	8.1 9.7 10.9 11.0 21.8 21.9 21.9	8.3 9.9 11.1 11.2 22.0 22.1 22.1	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
¹ Feet above confluence with Sh ² Feet above confluence with Ma ³ Feet above Newman Springs F	 ark River Inalapan Brook Road (downstream	face)	1			I	I	I
FEDERAL EMERGEN	FEDERAL EMERGENCY MANAGEMENT AG				FLOO	DWAY DA	TA	
	TH COUNT RISDICTIO	Y, NJ NS)						
3			5		ILL HOUSE BR	COOK - SWIN	MING RIVER	

FLOODING SO	URCE		FLOODWA	Y	V	BASE F		
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	(FEET N WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Tepehemus Brook A B C D E F G H I J K L M	$\begin{array}{c} 1,267^1\\ 2,006^1\\ 3,379^1\\ 4,488^1\\ 5,227^1\\ 6,336^1\\ 8,184^1\\ 9,187^1\\ 9,821^1\\ 10,243^1\\ 12,302^1\\ 13,464^1\\ 13,728^1\end{array}$	220 365 300 175 260 275 310 230 290 120 100 40 100	200 720 400 255 285 590 535 115 315 235 140 80 115	3.40 0.90 1.70 2.60 2.40 1.10 1.20 6.00 2.10 2.90 2.70 4.60 4.30	75.9 77.3 79.8 81.6 84.4 87.2 88.9 90.7 92.4 93.1 98.7 102.6 104.1	75.9 77.3 79.8 81.6 84.4 87.2 88.9 90.7 92.4 93.1 98.7 102.6 104.1	75.9 77.3 79.8 81.7 84.4 87.4 89.0 90.7 92.4 93.1 98.7 102.6 104.2	0.0 0.0 0.1 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
N O P	14,625 ¹ 15,523 ¹ 16,420 ¹	180 230 200	215 445 145	4.30 1.90 3.30	108.3 109.8 110.8	108.3 109.8 110.8	108.5 109.8 110.8	0.2 0.0 0.0
I epehemus Brook South Branch A B C D E F G H I ¹ Feet above confluence with I ² Feet above confluence with	1,162 ² 1,954 ² 2,799 ² 3,538 ² 3,591 ² 4,436 ² 5,069 ² 5,702 ² 6,336 ² McGellairds Brook Tepehemus Brook	100 130 200 130 220 140 50 160 150	140 235 300 135 760 410 85 480 125	$\begin{array}{c} 3.10 \\ 1.80 \\ 1.40 \\ 3.20 \\ 0.60 \\ 1.00 \\ 5.10 \\ 0.90 \\ 3.50 \end{array}$	100.0 104.1 107.1 109.9 112.3 112.5 113.9 115.9 118.3	100.0 104.1 107.1 109.9 112.3 112.5 113.9 115.9 118.3	100.0 104.1 107.1 109.9 112.3 112.5 114.0 116.0 118.3	0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0
FEDERAL EMERG	FEDERAL EMERGENCY MANAGEMEN				FLOOI	DWAY DA	ТА	
(ALL JU	(ALL JURISDICTION			TEP	TEPEHE EHEMUS BR	MUS BROOR	OK – TH BRANC	Н

FLOODING SOU	RCE	FLOODWAY			BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)					
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
Toms River				0100112)						
A	380 ¹	281	800	0.60	149.5	149.5	149.7	0.2		
В	1,967	39	109	4.30	150.4	150.4	150.5	0.1		
С	3,830	93	277	1.70	155.0	155.0	155.2	0.2		
D	4,6221	190	452	1.00	155.6	155.6	155.8	0.2		
Town Brook										
A	7 675 ²	336	1 458	0.50	17.5	17 5	17.5	0.0		
B	9 175 ²	117	518	1 50	18.7	18.7	18.8	0.0		
Č	10.870^2	249	1 434	0.50	26.6	26.6	10.0			
С П	11 2852	245	1 2 2 2	0.50	20.0	20.0	20.0	0.0		
	12 12 5	240	710	0.50	27.5	27.5	27.5	0.0		
	12,130	103	719	0.90	29.7	29.7	29.7	0.0		
F	15,930	202	203	1.80	30.9	30.9	30.9	0.0		
G	15,005	209	162	2.80	36.7	36.7	36.7	0.0		
	15,975	473	2,580	0.20	43.7	43.7	43.7	0.0		
I	10,925	228	207	1.70	44.2	44.2	44.2	0.0		
Furtle Mill Brook										
А	820 ³	90	289	3.80	3.9	3.9	4.1	0.2		
В	970 ³	53	146	7.60	3.9	3.9	4.1	0.2		
С	1,200 ³	137	611	2.00	5.8	5.8	5.9	0.1		
D	1,535 ³	36	186	5.90	5.8	5.8	5.9	0.1		
Ε	1.700 ³	55	205	5.40	6.4	6.4	6.6	0.2		
F	1.980^{3}	40	199	5.50	7.3	7.3	7.5	0.2		
G	2.390^{3}	173	473	2 90	9.0	9.0	9.2	0.2		
Ĥ	3.950 ³	130	565	2.00	9.3	93	9.5	0.2		
l	5,150 ³	162	385	3.50	9.7	9.7	9.9	0.2		
Feet above Monmouth Road Feet above Campbell Avenue Feet above confluence with Bra	anchport Creek		<u> </u>							
FEDERAL EMERGENCY MANAGEMENT AGENCY					FLOOD	OWAY DA	ТА			
(ALL JURISDICTIONS)			т	TOMS RIVER – TOWN BROOK – TURTLE MILL BROOK						

ſ			1			1		000	
	FLOODING SOUF	₹CE		FLOODWA	Y	v	BASE FI	LOOD	
				• ==	•		(FEET N	AVD)	
				SECTION	MEAN		,	,	
	CROSS SECTION	DISTANCE		AREA	VELOCITY	REGULATORY	WITHOUT	WITH	INCREASE
		1	(FEET)				FLOODWAY	FLOODWAY	
W	aackaack Creek	<u> </u>	+		SECOND)				
	A	9.130 ¹	511	2.740	0.70	10.5	8 0 ³	82	0.2
	В	9,980 ¹	683	3,130	0.60	10.5	8.0^{3}	82	0.2
	С	10,430 ¹	552	2,622	0.70	10.5	8.1 ³	8.3	0.2
	D	10,680 ¹	712	3,315	0.60	10.5	8.1 ³	8.3	0.2
	E	11,490 ¹	458	2,180	0.90	10.5	8.1 ³	8.3	0.2
	F	12,665 ¹	1,080	3,068	0.60	10.5	8.4 ³	8.6	0.2
	G	13,165 ¹	1,140	4,263	0.50	10.5	8.4 ³	8.6	0.2
	н	13,740 ¹	937	3.025	0.60	10.5	8.5 ³	8.7	0.2
	1	14,640 ¹	240	1,030	1.90	10.5	8.7 ³	8.9	0.2
	J	14,915 ¹	530	2.234	0.90	10.5	9.0^{3}	92	0.2
	K	15,620 ¹	238	560	3.50	10.5	9.4^{3}	9.6	0.2
	L	15,720 ¹	293	740	2.60	10.5	9.8 ³	10.0	0.2
	M	16.570 ¹	207	478	4.10	13.9	13.9	14.1	0.2
	N	16,700 ¹	552	1.458	1.30	16.1	16.1	16.3	0.2
	0	18.060 ¹	511	1.749	1.10	16.8	16.8	17.0	0.2
	Р	18.750 ¹	150	164	3.70	19.4	19.4	10 4	0.2
	Q	19.170 ¹	42	132	4.70	20.1	20.1	20.1	0.0
	R	19.270 ¹	74	136	4 20	22.0	22.1	20.1	0.0
	S	19.850 ¹	120	345	1.70	23.1	23.1	22.0	0.0
	T '	20,500 ¹	80	121	4.80	24.9	24.9	24.9	0.1
	Ŭ	21.150 ¹	100	254	2.30	26.4	26.4	29.5	0.0
	V	21.630 ¹	254	339	1 70	29.6	29.6	20.0	0.2
	Ŵ	22.240 ¹	70	97	5.90	33.0	23.0	23.7	0.1
			,		0.00	00.0	00.0	55.0	0.0
W	ampum Brook			1					
	A	430 ²	170	1,137	0.70	12.4	12.4	12.6	0.2
	В	2,000 ²	39	207	3.70	12.4	12.4	12.6	0.2
L				·					0.12
'F	eet above confluence with Rari	tan Bay						·····	
1 F/	eet above Limit of Flood Affecti	ng Community (Li	mit of Flood A	ffecting Comm	unity is approxim	ately 110 feet downs	tream of western I	boundary of Fort M	lonmouth)
ъĘ	levation computed without cons	sideration of backy	water effects c	of Raritan Bay				-	-
_									
– 	FEDERAL EMERGENC	Y MANAGEMEN	IT AGENCY						
▶ ′	1								
0	1					FLOOL	JWAY DA	IA	
Ē'	I MONMOUT	H COUNT	Y. NJ						
m /									
_	ALL JUK	ISDICTIO	NS)						A 17
N	1		-		WAAU	KAACK CR	=EK – WAN	IDOW RKO	OK
′									

FLOODING SO	URCE		FLOODWAY			BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)				
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
Wampum Brook			//	· · · · · · · · · · · · · · · · · · ·						
continued)										
C	2,390 ¹	20	141	5.40	13.7	13.7	13.9	0.2		
D	3,000 ¹	225	791	1.00	16.5	16.5	16.5	0.0		
É	3,500 ¹	240	703	1.10	16.5	16.5	16.5	0.0		
F	3,800 ¹	105	240	3.20	16.6	16.6	16.6	0.0		
G	4,000 ¹	143	271	2.80	16.9	16.9	17.0	0.1		
Н	4,210 ¹	41	131	5.80	19.0	19.0	19.0	0.0		
I	4,480 ¹	45	154	4.60	20.0	20.0	20.0	0.0		
J	4,680 ¹	65	470	1.50	23.5	23.5	23.5	0.0		
К	4,880	400	718	1.00	24.5	24.5	24.5	0.0		
L	5,050 ¹	75	508	1.40	24.5	24.5	24.5	0.0		
Μ	5,360 ¹	60	359	2.00	24.6	24.6	24.6	0.0		
N	5,480 ¹	60	352	2.00	24.6	24.6	24.6	0.0		
Vatson Creek										
А	90 ²	25	118	6.70	20.2	20.2	20.4	0.2		
В	390 ²	22	498	1.60	20.5	20.5	20.7	0.2		
С	1,490 ²	50	106	8.20	21.1	21.1	21.1	0.0		
D	2,110 ²	50	115	5.20	25.9	25.9	26.1	0.2		
E	2,860 ²	42	124	5.70	29.5	29.5	29.7	0.2		
Veamaconk Creek										
А	53 ³	420	800	1.00	59.5	59.5	59.5	0.0		
В	1,547 ³	347	800	0.99	60.5	60.5	60.5	0.0		
С	2,032 ³	430	784	1.01	61.1	61.1	61.1	0.0		
D	2,647 ³	230	382	2.07	62.4	62.4	62.4	0.0		
E	3,012 ³	61	151	5.23	63.9	63.9	63.9	0.0		

² Feet above limit of detailed study (limit of detailed study is approximately 1150 feet below Blansing Avenue)

³ Feet above confluence with Matchaponix Brook

TA	FEDERAL EMERGENCY MANAGEMENT AGENCY	
BL	MONMOUTH COUNTY, NJ	
	(ALL JURISDICTIONS)	
N		

FLOODWAY DATA

WAMPUM BROOK – WATSON CREEK – WEAMACONK CREEK

	FLOODWAY			BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)				
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Veamaconk Creek								
E	3 107	240	911	0.07	64.0	64.0	64.0	0.0
G	1 107	240	430	1.97	65.2	65.2	65.2	0.0
о Н	4,107	122	504	1.04	05.Z	05.2	05.2	0.0
11	4,547	270	1 004	1.55	71.1	71.4	00.0	0.0
1	4,007	370	1,994	0.40	71.1		71.1	0.0
5	4,907	430	1,990	0.40	71.1	71.1	71.1	0.0
	5,707	239	800	1.60	71.1	/1.1	/1.1	0.0
	0,758	290	380	2.10	/2.3	/2.3	/2.3	0.0
M	9,029	220	4/5	1./0	/6.3	/6.3	76.4	0.1
N	10,085	100	155	5.20	78.9	78.9	78.9	0.0
0	10,718	210	625	1.30	81.2	81.2	81.2	0.0
Р	11,880	220	475	1.70	82.5	82.5	82.5	0.0
Q	13,622	640	730	1.10	85.5	85.5	85.6	0.1
R	15,312	310	540	1.50	88.9	88.9	88.9	0.0
S	15,998	310	580	1.40	91.3	91.3	91.3	0.0
Т	17,582	200	420	0.90	95.6	95.6	95.7	0.1
U	18,374	190	310	1.10	96.6	96.6	96.7	0.1
V	19,219	140	235	1.50	98.3	98.3	98.3	0.0
W	20.011	260	380	0.90	99.3	99.3	99.3	0.0
x	20,750	355	415	0.90	99.8	99.8	99.9	0.1
Ŷ	21 173	255	220	1.60	102.2	102.2	102.2	0.0
7	22 493	280	285	1.00	102.2	104.8	104.8	0.0
~ ~	22,400	100	200	1.20	106.1	104.0	104.0	0.0
	23,200	190	200	1.30	100.1	100.1	100.1	0.0
AD	24,022	154	3/5	0.60	100.0	100.0	100.8	0.2
AC	24,082	201	592	0.50	107.3	107.3	107.5	0.2
AD	24,957	280	118	2.50	109.7	109.7	109.9	0.2
Feet above confluence with M	atchaponix Brook							
FEDERAL EMERGE	NCY MANAGEMEN	T AGENCY			FLOOI	DWAY DA	TA	
MONMOU (ALL JU	TH COUNT RISDICTIO	Y, NJ NS)					EK	

FLOODING SOU	RCE		FLOODWA	Y	Ŵ	BASE F VATER-SURFAC (FEET N	LOOD CE ELEVATION NAVD)	
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Weamaconk Creek (continued)								
AF AG AH AI AJ AK AL AM AN AO AP AQ AR Weamaconk Creek Tributary A B C D	26,497 ¹ 27,057 ¹ 27,507 ¹ 28,657 ¹ 29,117 ¹ 29,652 ¹ 30,247 ¹ 30,332 ¹ 30,927 ¹ 31,562 ¹ 32,087 ¹ 32,223 ¹ 400 ² 730 ² 1,080 ² 1,504 ²	27 97 66 92 45 27 28 42 89 34 24 28 21 50 47 55 40	79 188 63 376 86 73 47 88 190 84 66 67 68 36 99 78 53	3.80 1.60 4.70 0.60 2.50 3.00 4.70 2.50 1.10 2.60 3.30 3.30 3.30 3.20 6.00 2.20 2.80 4.20	115.6 118.6 119.7 123.5 123.6 124.7 127.5 130.0 133.6 133.9 135.6 137.8 138.6 64.9 64.9 64.9 64.9 65.8	$ \begin{array}{c} 115.6\\ 118.6\\ 119.7\\ 123.5\\ 123.6\\ 124.7\\ 127.5\\ 130.0\\ 133.6\\ 133.9\\ 135.6\\ 137.8\\ 138.6\\ \end{array} $	115.8 118.8 119.9 123.5 123.7 124.9 127.5 130.0 133.8 134.1 135.8 134.1 135.8 137.9 138.6 62.6 64.1 64.6 65.8	0.2 0.2 0.0 0.1 0.2 0.0 0.0 0.2 0.2 0.2 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.2 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.0 0.1 0.2 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
E F	1,604 ² 1,719 ²	35 100	367 1,087	0.60 0.20	79.6 79.6	79.6 79.6	79.6 79.6	0.0 0.0
Wells Brook A B C	22 ³ 151 ³ 1,173 ³	262 115 64	* *	*	27.5 27.5 38.1	* *	* *	* *
¹ Feet above confluence with Ma ² Feet above confluence with W ³ Feet above mouth ⁴ Elevation computed without co	atchaponix Brook eamaconk Creek	water effects	from Weamaco	* Data no	l t available	I		I
FEDERAL EMERGEN	NCY MANAGEMEN	it agency Y, NJ			FLOOI	OWAY DA	TA	
ALL JUI	RISDICTIO	NS)	v	VEAMACC	WEAMA	CONK CRE	EK – Y – WELLS	BROOK

FLOODING SOL	JRCE		FLOODWA	Y	WATER-SURFACE ELEVATION (FEET NAVD)				
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREAS	
Vells Brook continued)									
D	1,862 ¹	60	*	*	49.5	*	*	*	
E	2,704 ¹	65	*	*	58.2	*	*	*	
F	3,172 ¹	47	*	*	60.9	*	*	*	
G	3,714 ¹	*	*	*	66.5	*	*	*	
Н	3,804 ¹	298	*	*	67.6	*	*	*	
I	4,953 ¹	*	*	*	68.4	*	*	*	
J	5,303 ¹	106	*	*	73.1	*	*	*	
К	4,999 ¹	160	*	*	73.3	*	*	*	
L	5,503 ¹	58	*	*	73.3	*	*	*	
Μ	6,001 ¹	48	*	*	78.2	*	*	*	
N	6,747 ¹	97	*	*	83.6	*	*	*	
0	6,848 ¹	66	*	*	86.9	*	*	*	
Р	7,002 ¹	52	*	*	88.0	*	*	*	
Vemrock Brook	-			1					
А	1,478 ²	565	785	0.60	94.0	94.0	94.0	0.0	
В	2,323 ²	250	280	1.80	95.4	95.4	95.4	0.0	
С	3,274 ²	240	495	1.00	97.3	97.3	97.3	0.0	
D	4,382 ²	125	245	2.10	98.8	98.8	98.8	0.0	
E	5,016 ²	110	235	2.10	99.6	99.6	99.6	0.0	
F	5,755 ²	120	140	3.50	101.5	101.5	101.5	0.0	
G	7,250 ²	167	275	1.50	103.7	103.7	103.9	0.2	
Н	7,325 ²	410	1,801	0.20	107.6	107.6	107.6	0.0	
I	7,695 ²	234	768	0.60	107.6	107.6	107.6	0.0	
J	8,620 ²	134	227	1.90	108.9	108.9	109.1	0.2	
К	9,345 ²	264	409	1.00	111.4	111.4	111.6	0.2	

¹ Feet above mouth ² Feet above confluence with Weamaconk Creek

* Data not available

TΑ	FEDERAL EMERGENCY MANAGEMENT AGENCY	
BLE	MONMOUTH COUNTY, NJ	
12	(ALL JURISDICTIONS)	

FLOODWAY DATA

WELLS BROOK – WEMROCK BROOK

FLOODING SOU	RCE		FLOODWA	Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)					
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
Wemrock Brook										
(continued)	0.0051	100								
L	9,935	188	381	0.70	112.0	112.0	112.2	0.2		
M	10,405	32	54	4.60	112.8	112.8	113.0	0.2		
N	10,960	77	152	1.60	116.1	116.1	116.3	0.2		
0	11,290'	10	55	4.60	116.8	116.8	117.0	0.2		
Whale Pond Brook										
A	1.070^{2}	125	755	1 70	10.7	10.7	10.0	0.2		
В	1.450^2	205	952	1 30	10.9	10.0	19.9	0.2		
Č	1 960 ²	170	812	1.50	10.0	19.0	19.9	0.1		
8	2 2002	170	012	1.00	19.9	19.9	20.1	0.2		
E	2,200	120	900	1.30	22.0	22.6	22.6	0.0		
	2,515	233	1,423	0.90	22.6	22.6	22.6	0.0		
F	3,150	255	1,306	1.00	22.6	22.6	22.7	0.1		
G	4,175	85	379	3.40	22.8	22.8	23.0	0.2		
H	4,555	240	1,032	1.20	24.4	24.4	24.6	0.2		
I	6,465	126	390	3.30	31.8	31.8	32.0	0.2		
J	7,0602	305	906	1.40	32.4	32.4	32.6	0.2		
К	7,660 ²	410	848	1.50	34.6	34.6	34.8	0.2		
L	8,362 ²	385	1,366	0.90	35.0	35.0	35.2	0.2		
Μ	9,260 ²	564	1,439	0.60	35.3	35.3	35.5	0.2		
Ν	9,860 ²	397	812	1.10	35.4	35.4	35.6	0.2		
0	11.225 ²	342	613	1.50	36.4	36.4	36.6	0.2		
Р	12.235^2	339	387	2.30	38.1	38.1	38.3	0.2		
Q	12.945^2	183	841	1 10	47.9	47.0	10.5	0.2		
R	13 560 ²	282	470	1.10	47.5	47.9	40.1	0.2		
\$	$16,000^2$	202	479	1.90	40.0	40.0	48.2	0.2		
	10,300	237	295	1.70	57.2	57.2	57.4	0.2		
Tool about confluence it in 10/		200		2.20	04.0	04.0	04.1	0.1		
Feet above confidence with we	amaconk Creek									
FEDERAL EMERGEN	CY MANAGEMEN	T AGENCY								
					FLOOD	DWAY DA	TA			
MONMOUT	H COUNT	Y, NJ								
(ALL JUF	RISDICTIO	NS)								

FLOODING SOURCE		FLOODWAY			V	WATER-SURFACE ELEVATION (FEET NAVD)				
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREAS		
Whale Pond Brook										
continued)										
U	19,471 ¹	237	280	1.80	67.2	67.2	67.4	0.2		
V	20,451 ¹	96	122	4.20	71.7	71.7	71.9	0.2		
Whale Pond Brook Fributary 1										
Α	1.650^{2}	35	76	2.40	38.0	38.0	38.2	0.2		
B	2.500^{2}	100	264	0.70	42.2	42.2	42.2	0.0		
C	$3,700^2$	104	180	1.00	43.3	43.3	43.5	0.2		
Ď	5,000 ²	16	59	3 10	48.5	48.5	48.5	0.0		
E	5,200 ²	108	225	0.80	48.8	48.8	48.9	0.0		
Whale Pond Brook Fributary 2										
A	2,300 ²	68	66	2.70	52.6	52.6	52.8	0.2		
В	3,200 ²	71	86	2.10	55.9	55.9	56.1	0.2		
С	$3,750^2$	75	93	1.90	57.2	57.2	57.4	0.2		
D	$4,400^{2}$	92	80	2.20	59.1	59.1	59.3	0.2		
E	5,400 ²	90	91	2.00	62.6	62.6	62.8	0.2		
Villow Brook										
A	3.510^{3}	549	1.785	1.9	41.6	41.6	41.8	0.2		
В	4.730^{3}	266	1.147	2.4	43.3	43.3	43.5	0.2		
Ē	5.640^{3}	267	775	3.5	45.1	45.1	45.2	0.1		
Ď	7000^3	272	860	3.2	49.9	49.9	50.0	0.1		
F	8 100 ³	181	673	<u>4</u> 1	53.3	53.3	53.4	0.1		
L.	8 9001	229	951	29	57.0	57.0	57.2	0.7		

MONMOUTH COUNTY, NJ (ALL JURISDICTIONS)

12

WHALE POND BROOK - WHALE POND BROOK TRIBUTARY 1 -WHALE POND BROOK TRIBUTARY 2 - WILLOW BROOK

FLOODING SO	URCE		FLOODWA	Y	V	BASE F ATER-SURFAC		
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Willow Brook								
G H I J K L M N O P Q R S T	$\begin{array}{c} 10,250^1\\ 10,500^1\\ 13,200^1\\ 14,500^1\\ 15,200^1\\ 15,600^1\\ 15,752^1\\ 16,544^1\\ 17,125^1\\ 17,230^1\\ 19,606^1\\ 22,194^1\\ 22,299^1\\ 24,358^1\end{array}$	196 230 270 158 155 108 85 122 110 160 140 300 300 200	675 1,411 963 788 789 612 416 251 245 525 445 385 1,495 162	4.1 1.9 2.8 3.5 1.8 2.4 3.5 5.8 5.9 2.8 2.6 2.0 0.5 3.2	58.2 60.5 65.6 69.1 73.6 73.7 73.8 74.8 77.3 79.6 85.3 106.1 109.8 124.9	58.2 60.5 65.6 69.1 73.6 73.7 73.8 74.8 77.3 79.6 85.3 106.1 109.8 124.9	58.4 60.5 65.8 69.3 73.7 73.8 73.9 74.8 77.3 79.6 85.3 106.1 109.8 125.0	0.2 0.0 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
U V	26,312' 28,054 ¹	20 15	75 30	3.3 8.5	136.1 207.5	136.1 207.5	136.1 207.5	0.0 0.0
Willow Brook Tributary F A B C D E F G	158 ² 2,112 ² 3,485 ² 6,072 ² 8,501 ² 8,606 ² 11,774 ²	279 100 100 1200 270 270 220	210 270 410 225 475 220 270	4.80 3.70 2.50 3.90 1.30 2.80 1.60	77.4 92.0 93.4 98.0 107.6 112.7 131.4	77.4 92.0 93.4 98.0 107.6 112.7 131.4	77.4 92.0 93.4 98.0 107.6 112.7 131.6	0.0 0.0 0.0 0.0 0.0 0.0 0.2
¹ Feet above mouth ² Feet above confluence with V	Villow Brook	<u> </u>			I	I	1	
FEDERAL EMERGE	ENCY MANAGEMEN	T AGENCY			FLOO	DWAY DA	TA	
1 (ALL JU	RISDICTIO	NS)		WILLOW E	BROOK – WI		OK TRIBU	TARY F

				-					
							BASE F	LOOD	
	FLOODING SOUP	RCE		FLOODWA	Y	v	VATER-SURFAC		
		1		SECTION	MEAN			NAVD)	I
	CROSS SECTION	DISTANCE	WIDTH (FEET)	AREA (SQUARE FEET)	VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Wil	low Brook Tributary G			····· /···					
	A B	634 ¹ 2,957 ¹	20 10	55 20	7.70 7.40	114.8 169.4	114.8 169.4	114.9 169.4	0.1 0.0
Wi	low Brook East Branch								
	A	830 ²	90	195	1.30	80.7	80.7	80.9	0.2
	B	1,300 ²	32	82	3.10	81.2	81.2	81.3	0.1
	C	2,330 ²	48	70	3.60	84.4	84.4	84.5	0.1
	D	3,890 ²	28	62	4.10	99.0	99.0	99.2	0.2
	E	4,710 ²	18	56	4.40	106.7	106.7	106.9	0.2
Wr	eck Pond Brook								
	А	4,300 ³	350	1,090	2.60	9.2	9.2	9.4	0.2
1	В	$6,170^3$	273	730	3.90	15.6	15.6	15.6	0.0
	С	7,460 ³	338	1,789	1.80	20.3	20.3	20.3	0.0
	D	9,080 ³	255	828	5.60	21.6	21.6	21.8	0.2
	E	$11,000^3$	376	3.093	0.80	28.7	28.7	28.9	0.2
	F	12.620^3	216	861	3.80	30.2	30.2	30.4	0.2
ĺ	G	$14,300^3$	283	861	4.40	33.9	33.9	34.1	0.2
	Н	15,000 ³	191	815	4.40	39.0	39.0	39.2	0.2
	ł	$17,200^3$	131	334	9.00	41.6	41.6	41.8	0.2
	J	$18,500^3$	281	1,024	2.50	46.7	46.7	46.8	0.1
	К	$19,650^3$	264	650	4.10	48.1	48.1	48.3	0.2
	L	$21,000^3$	138	306	8.30	53.9	53.9	54.1	0.2
	M	$22,680^3$	313	1,185	1.30	59.7	59.7	59.9	0.2
	N	$24,400^3$	107	214	7.70	63.0	63.0	63.2	0.2
	0	25,374 ³	34	129	7.70	68.4	68.4	68.6	0.2
	Р	26,900 ³	182	483	3.10	71.5	71.5	71.7	0.2
	Q	29,625 ³	50	111	9.00	87.8	87.8	87.8	0.0
] F	eet above confluence with Wil	low Brook Tributar	y F						
F	eet above confluence with Wil	low Brook							
³ F	eet above Township of Wall co	orporate limits (cor	porate limits a	re approximate	ely 4325 ft below	Old Mill Road)			
	FEDERAL EMERGEN		T AGENCY						
							א מי עא/אור	ТЛ	
Π						FLOOL	JVVAT DA		
	MONMOUT	HCOUNI	Y, NJ						
<u> </u>	ALL JUF	RISDICTIO	NS)		V	VILLOW BRC	OK TRIBU	TARY G –	
2				WIL	LOW BRC	OK EAST B	RANCH – V	VRECK POI	ND BROOK

FLOODING SOL	JRCE		FLOODWA	Y	v	BASE F		
						(FEET N		
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Wreck Pond Brook East Branch								
B C D E F G H I J Yellow Brook	2,424 ¹ 3,100 ¹ 4,950 ¹ 5,350 ¹ 5,773 ¹ 6,574 ¹ 7,800 ¹ 8,395 ¹ 9,400 ¹	34 40 51 110 90 128 411 191 47	89 95 85 262 1,694 196 2,407 332 43	4.10 3.80 6.10 1.90 0.20 1.90 0.10 0.80 2.80	30.9 32.2 41.7 43.1 47.1 47.2 56.9 56.9 64.3	30.9 32.2 41.7 43.1 47.1 47.2 56.9 56.9 64.3	31.1 32.4 41.7 43.3 47.3 47.4 56.9 56.9 56.9 64.5	0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.2
A B C D E F G H I J K L M N	965 ² 2,525 ² 4,000 ² 4,700 ² 5,100 ² 6,220 ² 6,860 ² 8,330 ² 8,860 ² 10,200 ² 11,550 ² 12,600 ² 15,370 ² 17,050 ²	86 200 216 228 238 140 199 129 101 150 90 95 132 86	851 1,392 964 1,033 1,147 573 948 490 599 538 287 397 564 328	3.70 2.30 3.30 1.90 1.70 3.50 2.10 4.00 3.30 3.70 6.90 5.00 3.00 5.10	39.7 40.5 41.2 41.9 42.1 42.8 46.1 47.2 50.2 51.6 55.8 60.8 69.3 72.0	39.7 40.5 41.2 41.9 42.1 42.8 46.1 47.2 50.2 51.6 55.8 60.8 69.3 72.0	39.7 40.5 41.3 42.1 42.3 43.0 46.2 47.4 50.2 51.8 56.0 60.8 69.5 72.2	0.0 0.0 0.1 0.2 0.2 0.2 0.1 0.2 0.0 0.2 0.2 0.2 0.2 0.2 0.2
FEDERAL EMERGE	TH COUNT	it agency Y, NJ			FLOOI	OWAY DA	ТА	
(ALL JU	RISDICTIO	NS)	WR	ECK PON	D BROOK EA	AST BRANC	CH – YELLO	OW BROO

TABLE	FEDERAL EMERGEN		T AGENCY			FLOOI	DWAY DA	ТА	
¹ Fe ² Fe ³ Fe ⁴ Fl	eet above mouth eet above confluence with Sw eet above confluence with Yel evation computed without cor	imming River low Brook 2 usideration of backy	water effects	from Yellow Bro	ook 2				
Yel	low Brook 2 Tributary A B C	150 ³ 856 ³ 886 ³	30 53 56	109 270 302	3.50 1.40 1.20	100.9 107.3 107.3	99.6 ⁴ 107.3 107.3	99.8 107.3 107.3	0.2 0.0 0.0
Yel	low Brook 2 A B C D E F G H I	30,020 ² 30,050 ² 30,570 ² 30,591 ² 31,551 ² 32,595 ² 32,625 ² 34,160 ² 34,190 ²	10 30 21 52 33 14 35 14 21	75 193 165 231 129 75 159 75 69	10.30 4.00 3.30 2.40 4.20 7.30 3.40 7.30 7.90	98.5 100.6 101.6 101.7 102.4 108.2 109.0 114.2 114.3	98.5 100.6 101.6 101.7 102.4 108.2 109.0 114.2 114.3	98.7 100.6 101.7 101.8 102.4 108.2 109.0 114.2 114.3	0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0
Yel (co	low Brook ntinued) P Q R S T U V W	17,300 ¹ 18,500 ¹ 19,170 ¹ 19,440 ¹ 20,940 ¹ 22,800 ¹ 23,450 ¹ 24,380 ¹ 26,970 ¹	174 169 174 270 162 210 175 308 124	348 721 697 2,995 472 1,160 793 790 287	4.80 2.30 2.40 0.60 3.60 0.70 1.00 1.00 2.70	75.1 76.7 77.2 83.4 83.4 88.2 88.2 88.2 88.3 95.4	75.1 76.7 77.2 83.4 83.4 88.2 88.2 88.2 88.3 95.4	75.1 76.9 77.4 83.4 83.4 88.2 88.3 88.5 95.6	0.0 0.2 0.2 0.0 0.0 0.0 0.1 0.2 0.2
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
	FLOODING SOUF	RCE		FLOODWA	Y	W	BASE F		

		PCE			v	14	BASE FL		
	FLOODING SOUP			I LOODVVA		(FEET NAVD)			
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Yell	low Brook Tributary K A B C D E F G H I J Iow Brook Tributary L A B C D E F F	475 ¹ 2,270 ¹ 2,376 ¹ 3,802 ¹ 3,907 ¹ 5,174 ¹ 5,333 ¹ 5,438 ¹ 5,650 ¹ 6,336 ¹ 950 ¹ 1,056 ¹ 2,112 ¹ 2,376 ¹ 3,538 ¹ 6,019 ¹ ow Brook	230 300 250 250 20 20 20 20 20 40 90 90 200 230 15 30	355 595 635 380 635 30 70 70 70 70 70 70 70 70 70 70 70 70 70	$ \begin{array}{c} 1.90\\ 0.80\\ 0.70\\ 1.00\\ 0.60\\ 4.40\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 1.80\\ 1.00\\ 1.50\\ 0.40\\ 5.70\\ 4.40\\ \end{array} $	105.5 109.9 110.1 115.9 117.1 124.0 126.9 128.3 129.7 134.6 109.3 111.0 111.6 115.6 139.6 171.1	105.5 109.9 110.1 115.9 117.1 124.0 126.9 128.3 129.7 134.6 109.3 111.0 111.6 115.6 139.6 171.1	105.6 110.1 110.2 116.1 117.1 124.1 126.9 128.3 129.7 134.8 109.3 111.0 111.8 115.8 139.6 171.1	0.1 0.2 0.1 0.2 0.0 0.1 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.0 0.0
TABL						FLOOI	OWAY DA	ТА	
.E 12	(ALL JUR	ISDICTIO	NS)		Y	YELLOW BROOK TRIBUTARY K – YELLOW BROOK TRIBUTARY L			

5.0 **INSURANCE APPLICATIONS**

For flood insurance rating purposes, flood insurance zone designations are assigned to a community based on the results of the engineering analyses. The zones are as follows:

Zone A

Zone A is the flood insurance rate zone that corresponds to the 1-percent annual chance floodplains that are determined in the FIS by approximate methods. Because detailed hydraulic analyses are not performed for such areas, no base flood elevations or depths are shown within this zone.

Zone AE

Zone AE is the flood insurance rate zone that corresponds to the 1-percent annual chance floodplains that are determined in the FIS by detailed methods. In most instances, whole-foot base flood elevations derived from the detailed hydraulic analyses are shown at selected intervals within this zone.

Zone AH

Zone AH is the flood insurance rate zone that corresponds to the areas of 1-percent annual chance shallow flooding (usually areas of ponding) where average depths are between 1 and 3 feet. Whole-foot base flood elevations derived from the detailed hydraulic analyses are shown at selected intervals within this zone.

Zone AO

Zone AO is the flood insurance rate zone that corresponds to the areas of 1-percent annual chance shallow flooding (usually sheet flow on sloping terrain) where average depths are between 1 and 3 feet. Average whole-foot depths derived from the detailed hydraulic analyses are shown within this zone.

Zone AR

Area of special flood hazard formerly protected from the 1-percent annual chance flood event by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1-percent annual chance or greater flood event.

Zone A99

Zone A99 is the flood insurance rate zone that corresponds to areas of the 1-percent annual chance floodplain that will be protected by a Federal flood protection system where construction has reached specified statutory milestones. No base flood elevations or depths are shown within this zone.

Zone V

Zone V is the flood insurance rate zone that corresponds to the 1-percent annual chance coastal floodplains that have additional hazards associated with storm

waves. Because approximate hydraulic analyses are performed for such areas, no base flood elevations are shown within this zone.

Zone VE

Zone VE is the flood insurance rate zone that corresponds to the 1-percent annual chance coastal floodplains that have additional hazards associated with storm waves. Whole-foot base flood elevations derived from the detailed hydraulic analyses are shown at selected intervals within this zone.

Zone X

Zone X is the flood insurance rate zone that corresponds to areas outside the 0.2percent annual chance floodplain, areas within the 0.2-percent annual chance floodplain, and to areas of 1-percent annual chance flooding where average depths are less than 1 foot, areas of 1-percent annual chance flooding where the contributing drainage area is less than 1 square mile, and areas protected from the 1-percent annual chance flood by levees. No base flood elevations or depths are shown within this zone.

Zone D

Zone D is the flood insurance rate zone that corresponds to unstudied areas where flood hazards are undetermined, but possible.

6.0 FLOOD INSURANCE RATE MAP

The FIRM is designed for flood insurance and floodplain management applications.

For flood insurance applications, the map designates flood insurance rate zones as described in Section 5.0 and, in the 1-percent annual chance floodplains that were studied by detailed methods, shows selected whole-foot base flood elevations or average depths. Insurance agents use the zones and base flood elevations in conjunction with information on structures and their contents to assign premium rates for flood insurance policies.

For floodplain management applications, the map shows by tints, screens, and symbols, the 1- and 0.2-percent annual chance floodplains. Floodways and the locations of selected cross sections used in the hydraulic analyses and floodway computations are shown where applicable.

The current FIRM presents flooding information for the entire geographic area of Monmouth County. Previously, separate Flood Hazard Boundary Maps and/or FIRMs were prepared for each identified flood-prone incorporated community and the unincorporated areas of the county. This countywide FIRM also includes flood hazard information that was presented separately on Flood Boundary and Floodway Maps (FBFMs), where applicable. Historical data relating to the maps prepared for each community, up to and including this countywide FIS, are presented in Table 13, "Community Map History."

		FLOOD HAZARD BOUNDARY MAP REVISIONS DATE	FIRM	FIRM REVISIONS DATE
Aberdeen, Township of	February 28, 1975	None	March 18, 1985	August 3, 1992 September 25, 2009 June 20, 2018
Allenhurst, Borough of	August 24, 1973	April 30, 1976	March 15, 1979	September 15, 1983 September 25, 2009
Allentown, Borough of	December 21, 1973	February 6, 1976	September 16, 1981	September 25, 2009
Asbury Park, City of	July 13, 1973	April 30, 1976	February 15, 1979	September 15, 1983 September 25, 2009
Atlantic Highlands, Borough of	December 21, 1975	February 20, 1976	August 3, 1981	July 5, 1984 September 25, 2009 June 20, 2018
Avon-By-The-Sea, Borough of	February 1, 1974	May 14, 1976	March 15, 1979	July 5, 1983 September 25, 2009
Belmar, Borough of	May 13, 1972	None	May 13, 1972	July 1, 1974 February 27, 1976 March 1, 1984 September 25, 2009
Bradley Beach, Borough of	December 21, 1973	February 6, 1976	August 1, 1979	June 15, 1983 September 25, 2009
Brielle, Borough of	August 31, 1973	February 11, 1977	April 2, 1979	September 30, 1983 September 25, 2009
Colts Neck, Township of	April 12, 1974	September 17, 1976 February 11, 1977	April 15, 1982	September 25, 2009

MONMOUTH COUNTY, NC (ALL JURISDICTIONS)

TABLE

 $\frac{1}{3}$

INAME	IDENTIFICATION	REVISIONS DATE	EFFECTIVE DATE	REVISIONS DATE
Deal, Borough of	January 14, 1972	February 21, 1975	March 5, 1976	January 5, 1984 August 6, 2002 September 25, 2009
Eatontown, Borough of	June 21, 1974	February 6, 1976	September 16, 1981	September 25, 2009 June 20, 2018
Englishtown, Borough of	June 21, 1974	November 5, 1976	March 16, 1981	September 25, 2009
Fair Haven, Borough of	July 6, 1973	August 20, 1976	October 16, 1979	September 25, 2009 June 20, 2018
Farmingdale, Borough of	March 15, 1974	February 13, 1976	November 26, 1982	September 25, 2009
Freehold, Borough of ¹	September 25, 2009	None	September 25, 2009	None
Freehold, Township of	February 15, 1974	July 16, 1976	April 4, 1983	September 25, 2009
Hazlet, Township of	January 9, 1974	April 30, 1976	December 1, 1982	September 25, 2009
Highlands, Borough of	December 15, 1970	None	September 3, 1971	July 1, 1974 June 30, 1976 December 22, 1998 September 25, 2009 June 20, 2018
Holmdel, Township of	January 25, 1974	October 17, 1975 April 16, 1976	March 1, 1982	September 25, 2009
Howell Township of	March 22, 1974	August 27, 1976	January 6, 1983	September 25, 2009

MONMOUTH COUNTY, NC (ALL JURISDICTIONS)

TABLE

13

			EIDM	EIDM
INAIVIE	IDENTIFICATION	REVISIONS DATE	EFFECTIVE DATE	REVISIONS DATE
Interlaken, Borough of	March 15, 1974	May 14, 1976	January 2, 1981	September 25, 2009
Keansburg, Borough of	April 20, 1973	February 3, 1978	May 15, 1983	September 25, 2009
Keyport, Borough of	January 23, 1974	February 6, 1976	July 2, 1979	April 18, 1983 July 15, 1992 September 25, 2009
Lake Como, Borough of	February 22, 1974	None	November 28, 1980	November 2, 1995 September 25, 2009
Little Silver, Borough of	August 31, 1973	August 27, 1976	February 1, 1978	December 15, 1982 September 25, 2009 June 20, 2018
Loch Arbour, Village of	November 30, 1973	April 16, 1976	March 15, 1979	September 15, 1983 September 25, 2009
Long Branch, City of	May 31, 1974	None	May 5, 1976	January 13, 1978 January 5, 1984 September 25, 2009 June 20, 2018
Manalapan, Township of	July 20, 1973	None	September 15, 1977	September 25, 2009
Manasquan, Borough of	May 12, 1972	None	May 12, 1972	July 1, 1974 January 16, 1976 December 15, 1983 September 25, 2009

MONMOUTH COUNTY, NC (ALL JURISDICTIONS)

TABLE

3

	ΙΝΙΙΤΙΔΙ	FLOOD HAZARD	FIRM	FIRM
NAME	IDENTIFICATION	REVISIONS DATE	EFFECTIVE DATE	REVISIONS DATE
Marlboro, Township of	December 28, 1973	None	June 15, 1978	April 9, 1982 September 25, 2009
Matawan, Borough of	March 1, 1974	None	September 30, 1981	September 25, 2009 June 20, 2018
Middletown, Township of	July 19, 1974	July 9, 1976	February 15, 1984	July 15, 1992 September 25, 2009 June 20, 2018
Millstone, Township of	March 29, 1974	May 14, 1976	January 20, 1982	September 25, 2009
Monmouth Beach, Borough of	May 17, 1974	None	May 16, 1977	May 2, 1983 October 16, 1984 July 15, 1992 September 25, 2009 June 20, 2018
Neptune City, Borough of	June 28, 1974	None	August 11, 1978	September 25, 2009
Neptune, Township of	July 13, 1973	September 3, 1976	February 16, 1977	March 1, 1984 September 25, 2009
Ocean, Township of	June 1, 1973	May 31, 1974 September 10, 1976	October 14, 1977	December 18, 1981 July 2, 2003 September 25, 2009
Oceanport, Borough of	May 11, 1973	None	February 16, 1977	September 25, 2009 June 20, 2018
Red Bank, Borough of	March 8, 1974	March 19, 1976	May 19, 1981	September 25, 2009 June 20, 2018

MONMOUTH COUNTY, NC (ALL JURISDICTIONS)

TABLE

13

COMMUNITY	INITIAL	FLOOD HAZARD BOUNDARY MAP	FIRM	FIRM
NAME	IDENTIFICATION	REVISIONS DATE	EFFECTIVE DATE	REVISIONS DATE
Roosevelt, Borough of ¹	September 25, 2009	None	September 25, 2009	None
Rumson, Borough of	December 28, 1973	None	December 28, 1973	July 1, 1974 November 7, 1975 April 23, 1976 December 15, 1982 July 15, 1992 September 25, 2009 June 20, 2018
Sea Bright, Borough of	October 14, 1971	None	October 14, 1971	July 1, 1974 April 23, 1976 November 16, 1983 July 15, 1992 September 25, 2009 June 20, 2018
Sea Girt, Borough of	February 2, 1973	None	February 2, 1973	April 16, 1976 January 5, 1984 September 25, 2009
Shrewsbury, Borough of	June 7, 1974	October 24, 1975	August 1, 1979	September 25, 2009 June 20, 2018
Shrewsbury, Township of ¹	September 25, 2009	None	September 25, 2009	None
Spring Lake, Borough of	May 25, 1973	March 5, 1976 April 9, 1976 January 4, 1980 June 30, 1980	February 17, 1982	March 1, 1984 September 25, 2009

MONMOUTH COUNTY, NC (ALL JURISDICTIONS)

TABLE

 $\frac{1}{3}$

		FLOOD HAZARD			
COMMUNITY	INITIAL	BOUNDARY MAP	FIRM	FIRM	
NAME	IDENTIFICATION	REVISIONS DATE	EFFECTIVE DATE	REVISIONS DATE	
Spring Lake Heights, Borough of	May 3, 1974	March 5, 1976	December 15, 1981	September 25, 2009	
Tinton Falls, Borough of	April 12, 1974	April 23, 1976 December 31, 1976	April 15, 1982	September 25, 2009	
Union Beach, Borough of	December 28, 1973	August 6, 1976	May 15, 1980	March 2, 1983 July 15, 1992 September 25, 2009	
Upper Freehold, Township of	March 22, 1974	August 20, 1976 July 29, 1977	October 12, 1979	December 11, 1981	
Wall, Township of	June 1, 1973	None	February 16, 1977	September 25, 2009	
West Long Branch, Borough of	August 24, 1973	August 20, 1976	January 16, 1981	September 25, 2009	
FEDERAL EMERGENCY MANAGE	MENT AGENCY	СОМ		HISTORY	
(ALL JURISDICTIONS)					

7.0 <u>OTHER STUDIES</u>

A FIS has been prepared for Ocean County, New Jersey (All Jurisdictions) (FEMA, September 29, 2006). FISs have been prepared for municipalities in Mercer County bordering Monmouth County: Township of East Windsor (FEMA, September 16, 1982) and the Township of Washington (U.S. Department of Housing and Urban Development, March 1978). FISs have also been prepared for municipalities in Middlesex County bordering Monmouth County: Township of Monroe (FEMA, November 6, 1981) and the Township of Old Bridge (FEMA, October 16, 1987). No FISs have been published for the municipalities in Burlington County bordering Monmouth County: the Township of Chesterfield and the Township of North Hanover.

Information pertaining to each jurisdiction within Monmouth County has been compiled into this FIS. Therefore, this FIS supersedes all previously printed FIS Reports, FHBMs, FBFMs, and FIRMs for all jurisdictions within Monmouth County.

8.0 LOCATION OF DATA

Information concerning the pertinent data used in the preparation of this FIS can be obtained by contacting FEMA, Federal Insurance and Mitigation Division, 26 Federal Plaza, Room 1351, New York, New York 10278.

9.0 BIBLIOGRAPHY AND REFERENCES

Abrams Aerial Survey. (January 1976). <u>Aerial Contour Maps</u>, Scale 1"=500', Contour Interval 2 Feet: Allenhurst, New Jersey.

Abrams Aerial Survey. (January 1976). <u>Aerial Contour Maps</u>, Scale 1:6,000, Contour Interval 2 Feet: Loch Arbour, New Jersey.

Abrams Aerial Survey. (January 1976). <u>Aerial Contour Maps</u>, Scale 1:6,000, Contour Interval 2 Feet: South Amboy, New Jersey.

Abrams Aerial Survey. (January 1976). <u>Aerial Contour Maps</u>, Scale 1"=500', Contour Interval 2 Feet: Keansburg, New Jersey.

Abrams Aerial Survey. (1976). <u>Aerial Contour Maps</u>, Scale 1:6,000, Contour Interval 2 Feet: Borough of Brielle, New Jersey. Lansing, Michigan.

Abrams Aerial Survey. (1976). <u>Aerial Contour Maps</u>, Scale 1:6,000, Contour Interval 2 Feet: Borough of Union Beach, New Jersey. Lansing, Michigan.

Aero Service Corporation. (December 1964). <u>Topographic Maps</u>. Scale 1:1,200, Contour Interval 2 Feet: Borough of Red Bank, Monmouth County, New Jersey.

American Air Surveys, Inc. <u>Topographic Map of Manasquan River Reservoir Site 1</u>. Scale 1:2,400, Contour Interval 2 Feet. Atlantic Aerial Survey Co., Inc. (March 5, 1988). <u>Topographic Map</u>, compiled from aerial photography, Scale 1"=200', Contour Interval 2 Feet: Highlands Borough, Monmouth County, New Jersey.

Boss International, Inc. <u>RiverCAD XP for AutoCAD</u>, <u>Release 2007.3 for Windows</u>. (April 12, 2007). Madison, Wisconsin.

Brown, James S. (1971). <u>History of Marlboro Township</u>, prepared for the Battleground Historical Society.

Brown, Robert and Thomas Henlin. <u>Fiftieth Anniversary of Keansburg, New Jersey</u>. The Advisor, Inc.

Buchart-Horn Basco Associates of York, Pennsylvania. (April 2003). <u>Topographic Maps</u>, compiled from aerial photographs.

Candeub, Fleissing and Associates. (1975). <u>Borough of Keyport, Comprehensive Master</u> <u>Plan</u>.

Chow, Ven Te. (1964). Handbook of Applied Hydrology. McGraw Hill: New York.

Chow, Ven Te. (1963). Open-Channel Hydraulics, 5th Edition. McGraw Hill: New York.

Delaware River Basin Commission. (1973). <u>Basin-Wide Program for Floodplain</u> <u>Delineation</u>.

Dewberry & Davis, LLC. (October 1982, Unpublished). <u>Topographic Maps for the</u> <u>Borough of Deal, Monmouth County, New Jersey</u>, prepared for the Federal Emergency Management Agency, Scale 1:2,400, Contour Interval 4 Feet. Fairfax, Virginia.

Dewberry & Davis, LLC. (April 1982, Unpublished). <u>Tidal Flood Profiles for the New</u> <u>Jersey Coastline</u>, prepared for the Federal Emergency Management Agency. Fairfax, Virginia.

Digital Aerial Surveys, Inc. <u>Topographic Map of the Township of Wall, East of Route</u> <u>35, South of Wall Church Road</u>. Scale 1:2,400, Contour Interval 2 Feet.

Federal Emergency Management Agency. (September 29, 2006). <u>Flood Insurance</u> <u>Study, Ocean County, New Jersey (All Jurisdictions)</u>. Washington, D.C.

Federal Emergency Management Agency (July 2, 2003). <u>Flood Insurance Study</u>, <u>Township of Ocean, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency (August 6, 2002). <u>Flood Insurance Study</u>, <u>Borough of Deal, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (December 22, 1998). <u>Flood Insurance Study</u>, <u>Borough of Highlands</u>, <u>Monmouth County</u>, <u>New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (November 6, 1991). <u>Flood Insurance Study</u>, <u>Township of Monroe</u>, <u>Middlesex County</u>, <u>New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (1989). <u>Guidelines and Specifications for</u> <u>Wave Elevation Determination and V Zone Mapping</u>.

Federal Emergency Management Agency. (October 16, 1987). <u>Flood Insurance Study</u>, <u>Township of Old Bridge, Middlesex County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (October 16, 1984). <u>Supplement to Flood</u> <u>Insurance Study – Wave Height Analysis, Borough of Monmouth Beach, Monmouth</u> <u>County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (September 18, 1984). <u>Flood Insurance</u> <u>Study, Township of Aberdeen, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (April 17, 1984). <u>Flood Insurance Study</u>, <u>Township of Hamilton, Mercer County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (January 5, 1984). <u>Supplement to Flood</u> <u>Insurance Study – Wave Height Analysis, Borough of Atlantic Highlands, Monmouth</u> <u>County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (September 1, 1983). <u>Supplement to Flood</u> <u>Insurance Study – Wave Height Analysis, Borough of Belmar, Monmouth County, New</u> <u>Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (September 1, 1983). <u>Supplement to Flood</u> <u>Insurance Study – Wave Height Analysis, Borough of Spring Lake, Monmouth County,</u> <u>New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (September 1, 1983). <u>Supplement to Flood</u> <u>Insurance Study – Wave Height Analysis, Township of Neptune, Monmouth County,</u> <u>New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (August 15, 1983). <u>Flood Insurance Study</u>, <u>Township of Middletown, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (July 5, 1983). <u>Supplement to Flood</u> <u>Insurance Study – Wave Height Analysis, Borough of Deal, Monmouth County, New</u> <u>Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (July 5, 1983). <u>Supplement to Flood</u> <u>Insurance Study – Wave Height Analysis, Borough of Sea Girt, Monmouth County, New</u> <u>Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (July 5, 1983). <u>Supplement to Flood</u> <u>Insurance Study – Wave Height Analysis, City of Long Branch, Monmouth County, New</u> <u>Jersey</u>. Washington, D.C. Federal Emergency Management Agency. (June 15, 1983). <u>Supplement to Flood</u> <u>Insurance Study – Wave Height Analysis, Borough of Manasquan, Monmouth County,</u> <u>New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (May 16, 1983). <u>Supplement to Flood</u> <u>Insurance Study – Wave Height Analysis, Borough of Sea Bright, Monmouth County,</u> <u>New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (March 30, 1983). <u>Flood Insurance Study</u>, <u>Borough of Brielle, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (March 15, 1983). <u>Flood Insurance Study</u>, <u>City of Asbury Park, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (March 15, 1983). <u>Flood Insurance Study</u>, <u>Village of Loch Arbour</u>, <u>Monmouth County</u>, <u>New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (January 5, 1983). <u>Flood Insurance Study</u>, <u>Borough of Avon-by-the-Sea, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (December 15, 1982). <u>Flood Insurance Study</u>, <u>Borough of Bradley Beach</u>, <u>Monmouth County</u>, <u>New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (November 16, 1982). <u>Flood Insurance</u> <u>Study, Borough of Keansburg, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (October 18, 1982). <u>Flood Insurance Study</u>, Borough of Keyport, Monmouth County, New Jersey. Washington, D.C.

Federal Emergency Management Agency. (October 4, 1982). <u>Flood Insurance Study</u>, <u>Township of Freehold</u>, <u>Monmouth County</u>, <u>New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (September 16, 1982). <u>Flood Insurance</u> <u>Study, Township of East Windsor, Mercer County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (September 2, 1982). <u>Flood Insurance Study</u>, <u>Borough of Union Beach, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (July 6, 1982). <u>Flood Insurance Study</u>, <u>Township of Howell, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (June 15, 1982). <u>Flood Insurance Study –</u> <u>Wave Height Analysis – Borough of Little Silver, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (June 15, 1982). <u>Flood Insurance Study –</u> <u>Wave Height Analysis – Borough of Rumson, Monmouth County, New Jersey</u>. Washington, D.C. Federal Emergency Management Agency. (June 1, 1982). <u>Flood Insurance Study</u>, <u>Township of Hazlet, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (April 1982). <u>Flood Insurance Study</u>, <u>Township of Marlboro, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (October 15, 1981). <u>Flood Insurance Study</u>, <u>Borough of Tinton Falls, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (October 15, 1981). <u>Flood Insurance Study</u>, <u>Township of Colts Neck, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (September 1, 1981). <u>Flood Insurance Study</u>, <u>Township of Holmdel, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (July 20, 1981). <u>Flood Insurance Study</u>, <u>Township of Millstone</u>, <u>Monmouth County</u>, <u>New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (June 15, 1981). <u>Flood Insurance Study</u>, <u>Borough of Spring Lake Heights, Monmouth County, New Jersey</u>. Washington, D.C

Federal Emergency Management Agency. (Revised February 1981). Users Manual for Wave Height Analyses. Washington, D.C.

Federal Emergency Management Agency. (Unpublished). <u>Flood Insurance Study</u>, Borough of Point Pleasant, Ocean County, New Jersey.

Federal Emergency Management Agency. (Unpublished). <u>Flood Insurance Study</u>, Borough of Rumson, Monmouth County, New Jersey.

Federal Emergency Management Agency. (Unpublished). <u>Flood Insurance Study</u>, <u>Township of East Windsor, Middlesex County, New Jersey</u>.

Federal Emergency Management Agency. (Unpublished). <u>Flood Insurance Study</u>, <u>Township of Jackson, Ocean County, New Jersey</u>.

Federal Emergency Management Agency. (Unpublished). <u>Flood Insurance Study</u>, <u>Township of Old Bridge, Middlesex County, New Jersey</u>.

Federal Emergency Management Agency, Federal Insurance Administration. (August 17, 1982). <u>Flood Insurance Study, Borough of Spring Lake, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (December 16, 1981). <u>Flood Insurance Study, Borough of Allentown, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (December 1981). <u>Flood Insurance Study, Township of Ocean, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (July 16, 1981). <u>Flood Insurance Study, Borough of West Long Branch, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (June 1980; Revised April 1981). <u>Users Manual for Wave Height Analysis to Accompany</u> <u>Methodology for Calculating Wave Action Effects Associated with Storm Surges</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (March 30, 1981). <u>Flood Insurance Study, Borough of Matawan, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (March 16, 1981). <u>Flood Insurance Study, Borough of Eatontown, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (February 3, 1981). <u>Flood Insurance Study, Borough of Atlantic Highlands, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (February 1981). <u>Coastal Flooding Storm Surge Model, Methodology, Part 1</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (November 19, 1980). <u>Flood Insurance Study, Borough of Red Bank, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (September 16, 1980). <u>Flood Insurance Study, Borough of Englishtown, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (April 22, 1980). <u>Statement of Work for Modifications of Flood Insurance Studies to Include Wave Crest Elevations</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (September 15, 1976). <u>Flood Insurance Study, Township of Lakewood, Ocean County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (Unpublished). <u>Flood Insurance Study, Borough of Point Pleasant Beach, Ocean County, New Jersey</u>.

Federal Emergency Management Agency, Federal Insurance Administration. (Unpublished). <u>Flood Insurance Study, Township of Monroe, Middlesex County, New Jersey</u>.

Federal Emergency Management Agency, Federal Insurance Administration. (Unpublished). <u>Flood Hazard Boundary Map, Township of Colts Neck, Monmouth</u> <u>County, New Jersey</u>.

Geod Aerial Mapping, Inc. (1978). <u>Photogrammetric Mapping</u>. Scale 1:2,400, Contour Interval 5 Feet. Trenton, New Jersey.

Geod Aerial Mapping, Inc. (1978). <u>Survey of Rocky Brook and Millstone River</u>, <u>Millstone, New Jersey</u>. Trenton, New Jersey.

Geod Aerial Mapping, Inc. (1977). <u>Topographic Maps</u>. Scale 1:2,400, Contour Interval 5 Feet: Colts Neck, New Jersey.

Geod Aerial Mapping, Inc. (May 1974). <u>Topographic Maps</u>. Scale 1:24,000, Contour Interval 5 Feet: Township of Holmdel, New Jersey.

Gray, William C. (1972). A History of Allenhurst, New Jersey, 1898-1972.

Hammer, Green, Siler Associates. (June 1969). <u>Population, Housing and Income Study,</u> <u>Middlesex County Study Area, New Jersey</u> prepared for the Middlesex County Planning Board.

Howell Township Environmental Commission. Streams of Howell Township.

Keystone Aerial Surveys. (April 1979). <u>Aerial Photographs and Aerial Plotting Plates</u>. Scale 1:12,000: Aberdeen, New Jersey. Philadelphia, Pennsylvania.

Keystone Aerial Surveys. (March 1979) <u>Aerial Photographs and Aerial Plotting Plates</u>. Scale 1:12,000: Deal, New Jersey. Philadelphia, Pennsylvania.

Maps Incorporated. (1968). <u>Topographic Maps</u>. Scale 1:1,200, Contour Interval 2 Feet: Borough of New Shrewsbury (Tinton Falls), New Jersey.

Midlantic Surveys. (April 1962; Revised 1980). <u>Topographic Maps Compiled from</u> <u>Aerial Photographs</u>. Scale 1:24,000, Contour Interval 4 Feet.

Midlantic Surveys. (1978). <u>Topographic Map of the Borough of Spring Lake Heights</u>. Scale 1:2,400, Contour Interval 5 Feet.

Midlantic Surveys. (1978). <u>Topographic Map of the Township of Howell</u>. Scale 1:2,400, Contour Interval 5 Feet.

Midlantic Surveys. <u>Topographic Map</u>. Scale 1:2,400, Contour Interval 5 Feet: Township of Freehold, New Jersey. West Caldwell, New Jersey.

Midlantic Surveys. <u>Topographic Map, Borough of Matawan</u>. Scale 1:2,400, Contour Interval 5 Feet. Verona, New Jersey.

Monmouth County Environmental Council. (1975). <u>Natural Features of Monmouth</u> <u>County</u>.

Monmouth County Park System. <u>Shark River Topography</u>, From Route 18 to the Garden <u>State Parkway</u>. Scale 1:2,400, Contour Interval 2 Feet.

Monmouth County Planning Board. (1981). Study of Population, Monmouth County.

Monmouth County Planning Board. (February 1978). Howell Township.

Monmouth County Planning Board. (1978). <u>Aerial Photographs</u>. Scale 1:2,400: Hazlet, New Jersey.

Monmouth County Planning Board. (1976). Borough of Matawan.

Monmouth County Planning Board. (1974). Study of Population, Monmouth County.

National Academy of Sciences. (1977). <u>Methodology for Calculating Wave Action</u> <u>Effects Associated with Storm Surges</u>. Washington, D.C.

National Resources Committee. (1938). <u>Modified Rational Method of Estimating Flood</u> <u>Flows</u>, by M. Bernard. Washington, D.C.

New Jersey Image Warehouse. (Retrieved October 2006). <u>Monmouth County 2002</u> <u>Digital Orthoimagery</u>. http://njgin.nj.gov/OIT_IW/index.jsp.

Quinn and Associates. (1979). <u>Topographic Maps</u>. Scale 1:2,400, Contour Interval 5 Feet: Borough of Allentown, New Jersey. Horsham, Pennsylvania.

Quinn and Associates. (1978). <u>Aerial Photographs</u>. Scale 1:2,400, Contour Interval 5 Feet: Borough of Allentown, New Jersey. Horsham, Pennsylvania.

Quinn and Associates. (1970; Revised 1976). <u>Topographic Map Sheets, Matchaponix</u> <u>Brook</u>. Scale 1"=200', Contour Interval 5 Feet.

Quinn and Associates. (1969). <u>Topographic Maps</u>. Scale 1:2,400, Contour Interval 5 Feet: Marlboro, New Jersey.

Quinn and Associates. (1968). <u>Aerial Photographs and Photogrammetric Mapping</u>. Scale 1:2,400, Contour Interval 5 Feet: Millstone River, Township of Millstone, New Jersey. Trenton, New Jersey.

Real Estate Data, Inc. (August 1976). <u>Real Estate Atlas of Ocean County, New Jersey</u>, Scale 1"=1000'.

Robinson Aerial Surveys, Inc. (March 20, 1976). <u>Aerial Contour Maps</u>. Scale 1"=50', Contour Interval 1 Foot. Newton, New Jersey.

Robinson Aerial Surveys, Inc. (April 1972). <u>Aerial Contour Maps</u>, Scale 1:2,400, Contour Interval 5 Feet: Borough of Brielle, New Jersey.
Robinson Aerial Surveys, Inc. (1966). <u>Topographic Maps</u>, Scale 1:1,200, Contour Interval 1 Foot: Northeast Monmouth County, New Jersey, prepared for Northeast Monmouth County Regional Sewerage Authority.

Robinson Aerial Surveys, Inc. (April 1962). <u>Detailed Topographic Maps</u>. Scale 1:1,200, Contour Interval 2 Feet: Township of Ocean, New Jersey.

Snyder, John P. (1969). <u>The Story of New Jersey's Civil Boundaries</u>, 1606-1968, New Jersey Bureau of Geology and Topography. Trenton, New Jersey.

State of New Jersey, County of Monmouth, G.I.S. Division, Information Services. (Provided November 2006). <u>County-Wide Topography</u>. Contour Interval 2 Feet.

State of New Jersey, Department of Conservation and Economic Development. (1964). Water Resources Circular No. 14, <u>Flood Depth Frequency in New Jersey</u>. Trenton, New Jersey.

State of New Jersey, Department of Environmental Protection, Bureau of Geology and Topography. (1977). <u>Geology of Monmouth County in Brief</u> by Paul B Dahlgren. Trenton, New Jersey.

State of New Jersey, Department of Environmental Protection, Division of Water Resources. (1974). Special Report 38, <u>Magnitude and Frequency of Floods in New Jersey with Effects of Urbanization</u> by Steven J. Stankowski.

State of New Jersey, Department of Environmental Protection, Division of Water Resources. (March 1973). <u>Flood Hazard Report No. 17, Delineation of Flood Hazard</u> Area, Matchaponix Brook System. Trenton, New Jersey

State of New Jersey, Department of Environmental Protection, Division of Water Resources. (March 1973). <u>Flood Hazard Report No. 8, Delineation of Flood Hazard Area</u>, South River-Manalapan Brook. Trenton, New Jersey

State of New Jersey, Department of Environmental Protection, Division of Water Resources. (February 1973). <u>Flood Hazard Report No. 12</u>, <u>Delineation of Flood Hazard Area</u>, Millstone River, Rocky Brook. Trenton, New Jersey

State of New Jersey, Department of Environmental Protection, Division of Water Resources. (1972). Special Report 37, <u>Floods of August and September 1971 in New Jersey</u>.

State of New Jersey, Department of Labor and Industry. (March 1981). <u>New Jersey</u> <u>1980 Census Counts of Population – by Race and Spanish Origin</u>. Trenton, New Jersey.

State of New Jersey, Department of Labor and Workforce Development, New Jersey Data Center. (March 2001). <u>Population for the Counties and Municipalities in New Jersey: 1990 and 2000</u>. Trenton, New Jersey.

T & M Associates, Inc. (April 1974). <u>Master Drainage Plan, Township of Middletown,</u> <u>New Jersey</u>. T & M Associates, Inc. (February 1972). <u>Master Drainage Plan, Borough of Eatontown,</u> <u>New Jersey</u>.

T & M Associates, Inc. <u>Topographic Maps</u>, Scale 1:600, Contour Interval 1 Foot: Keansburg, New Jersey.

Tetra Tech, Inc. (May 1977). <u>Coastal Flooding Handbook, Parts I and II</u>. Prepared for U.S. Department of Housing and Urban Development. Washington, D.C.

Tetra Tech, Inc. (1975). <u>Topographic Maps Compiled by Photogrammetric Methods</u>, Scale 1:1,200, Contour Interval 2 Feet: Hazlet, New Jersey. Pasadena, California.

Topographic Data Consultants Inc. (May 1980). <u>Aerial Photographs</u>, Scale 1:9,00: Township of Aberdeen, Monmouth County, New Jersey.

Topographic Data Consultants, Inc. (Spring 1980). <u>Topographic Maps of Aberdeen</u>, <u>New Jersey</u>, Scale 1"=400', Contour Interval 4 feet. Berlin, New Jersey.

Township of Hazlet, Chamber of Commerce. (1973). <u>One Hundred and Twenty-Fifth</u> <u>Anniversary, 1848-1973</u>. Hazlet, New Jersey.

Township of Marlboro, New Jersey. (December 1970). Master Plan.

Township of Wall. (1967). Tax Map. Scale 1:9,600.

U.S. Army Corps of Engineers. (March 5, 1993). <u>Engineering and Design, Hydrologic</u> <u>Frequency Analysis, Engineer Manual 1110-2-1415</u>.

U.S. Army Corps of Engineers. (January 1962). <u>Statistical Methods in Hydrology</u>, by Leo R. Beard.

U.S. Army Corps of Engineers, Coastal Engineering Research Center. (August 1988). Miscellaneous Paper CERC-88-12, <u>Coastal Processes at Sea Bright to Ocean Township</u>: Volume II: Appendices B-G, p. G23.a

U.S. Army Corps of Engineers, Galveston District. (June 1975). <u>Guidelines for</u> <u>Identifying Coastal High Hazard Zones</u>. Galveston, Texas.

U.S. Army Corps of Engineers, Hydrologic Engineering Center. (May 2005). <u>HEC-RAS</u> <u>River Analysis System, Version 3.1.3</u>. Davis, California.

U.S. Army Corps of Engineers, Hydrologic Engineering Center. (November 2002). <u>HEC-RAS River Analysis System Users Manual</u>. Davis, California.

U.S. Army Corps of Engineers, Hydrologic Engineering Center. (October 1973, updated November 1976). <u>HEC-2 Water Surface Profiles, Generalized Computer Program</u>. Davis, California.

U.S. Army Corps of Engineers, Hydrologic Engineering Center. (May 1974). <u>Floodway</u> <u>Determination Using Computer Program HEC-2</u>, <u>Training Document No. 5</u>. Davis, California.

U.S. Army Corps of Engineers, Hydrologic Engineering Center. <u>HEC-2 Water-Surface</u> <u>Profiles Users Manual</u>.

U.S. Army Corps of Engineers, Philadelphia District. (July 1978). <u>Lake Lefferts Dam –</u> <u>Phase 1 Inspection Report – National Dam Safety Program</u>. Philadelphia, Pennsylvania.

U.S. Army Corps of Engineers, Philadelphia District. (July 1978). <u>Lake Matawan Dam</u> <u>– Phase 1 Inspection Report – National Dam Safety Program</u>. Philadelphia, Pennsylvania.

U.S. Army Corps of Engineers, Philadelphia District. (June 1972). <u>Tidal Flood Plain</u> Information, Toms River Area, Ocean County, New Jersey. Philadelphia, Pennsylvania.

U.S. Army Corps of Engineers, New York District. (1979). <u>Weibull Plotting Positions</u> <u>Analysis for the Battery, Sandy Hook and East Newark</u>. Albany, New York.

U.S. Army Corps of Engineers, New York District. (July 1972). <u>Tidal Flood Plain</u> <u>Information, Sandy Hook Bay and Raritan Bay Shore Areas of Monmouth County, New</u> <u>Jersey</u>. New York, New York.

U.S. Army Corps of Engineers, New York District. (1972). <u>Model Studies of</u> <u>Shrewsbury Inlet</u>. New York.

U.S. Army Corps of Engineers, New York District. (April 1970). <u>Reconnaissance</u> <u>Report for Poplar Brook.</u>

U.S. Army Corps of Engineers, New York District. (June 1969). <u>Elizabeth River Flood</u> Control Project, Elizabeth, New Jersey: General Design Memorandum.

U.S. Army Corps of Engineers, New York District. (November 1960). <u>Raritan Bay and</u> <u>Sandy Hook Bay, New Jersey, Cooperative Beach Erosion Control and Interim Hurricane</u> <u>Study (Survey)</u>. New York, New York.

U.S. Army Corps of Engineers, North Atlantic Division. (August 1963). <u>Report on</u> <u>Operation Five High, March 1962 Storm</u>.

U.S. Army Corps of Engineers, Sacramento District. Civil Works Investigations Project CW-151, <u>Statistical Methods in Hydrology</u>.

U.S. Department of Agriculture, Soil Conservation Service. (May 1976). Technical Release No. 61, <u>WSP-2 Computer Program</u>. Washington, D.C.

U.S. Department of Agriculture, Soil Conservation Service. (1976). Technical Release No. 20, <u>Computer Program for Project Formulation – Hydrology</u>. Washington, D.C.

U.S. Department of Agriculture, Soil Conservation Service. (1964, Revised 1972). National Engineering Handbook. Washington, D.C.

U.S. Department of Commerce, Bureau of the Census. (1981). <u>1980 Census of</u> <u>Population, Number of Inhabitants, New Jersey</u>. Washington, D.C.

U.S. Department of Commerce, Bureau of the Census. (1971). <u>1970 Census of</u> <u>Population, Number of Inhabitants, New Jersey</u>. Washington, D.C.

U.S. Department of Commerce, Bureau of Public Roads. (December 1965). Circular No. 5, <u>Hydraulic Charts for the Selection of Highway Culverts</u>. Washington, D.C.

U.S. Department of Commerce, Environmental Science Services Administration. (April 1970). Technical Memorandum WBTM, Hydro 11, Joint Probability Methods of Tide Frequency Analysis applied to Atlantic City and Long Beach Island, New Jersey, by V.A. Myers.

U.S. Department of Commerce, National Oceanic and Atmospheric Administration. (1967-1977). <u>Climatological Data, New Jersey</u>. Asheville, North Carolina.

U.S. Department of Commerce, National Oceanic and Atmospheric Administration. (1975). <u>Tropical Cyclone Deck 933</u>. Asheville, North Carolina.

U.S. Department of Commerce, National Oceanic and Atmospheric Administration. (May 1957). Technical Paper NWD-1S, <u>Some Climatological Characteristics of</u> <u>Hurricanes and Tropical Storms, Gulf and East Coasts of the U.S.</u> by F.P. How et al.

U.S. Department of Commerce, Weather Bureau. (1963). Technical Paper No. 40, Rainfall Frequency Atlas of the United States. Washington, D.C.

U.S. Department of Commerce, Weather Bureau. (1965). Technical Paper No. 55, <u>Tropical Cyclones of the North Atlantic Ocean, 1871-1963</u> by C.W. Cry.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (April 1979). <u>Flood Insurance Study</u>, Borough of Fair Haven, Monmouth County, New Jersey. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (February 1979). <u>Flood Insurance Study, Borough of Shrewsbury, Monmouth County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (December 1978). <u>Flood Insurance Study, Township of Aberdeen, Monmouth County,</u> <u>New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (September 15, 1978). <u>Flood Insurance Study, Borough of Allenhurst, Monmouth</u> County, New Jersey. Washington, D.C. U.S. Department of Housing and Urban Development, Federal Insurance Administration. (September 1978). <u>Flood Insurance Study, Village of Loch Arbour, Monmouth County,</u> <u>New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (August 1978). <u>Flood Insurance Study, City of Asbury Park, Monmouth County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (March 1978). <u>Flood Insurance Study, Township of Washington, Mercer County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (September 1977). <u>Flood Insurance Study, Borough of Little Silver, Monmouth County,</u> <u>New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (July 1977). <u>Flood Insurance Study, Township of Manalapan, Monmouth County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (December 1976). <u>Flood Insurance Study, Borough of Monmouth Beach, Monmouth County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (September 1976). <u>Flood Insurance Study, Township of Wall, Monmouth County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (August 16, 1976). <u>Flood Insurance Study, Township of Neptune, Monmouth County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (August 1976). <u>Flood Insurance Study, Borough of Oceanport, Monmouth County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (August 1976). <u>Flood Insurance Study, Borough of Little Silver, Monmouth County,</u> <u>New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (April 16, 1976). <u>Flood Insurance Study, Borough of Sea Girt, Monmouth County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (March 1976). <u>Flood Insurance Study</u>, Borough of Deal, Monmouth County, New Jersey. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (February 27, 1976). <u>Flood Insurance Study, Borough of Belmar, Monmouth County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (Revised 1976). <u>Code of Federal Regulations, Title 24, Chapter 10, Parts 1910 3A and 3B, Federal Register</u>, Volume 41, No. 207. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (February 1975). <u>Flood Insurance Study, City of Long Branch, Monmouth County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (January 1974). <u>Flood Insurance Study, City of Sea Bright, Monmouth County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (December 1973). <u>Flood Insurance Study, Borough of Spring Lake, Monmouth County,</u> <u>New Jersey</u>, prepared by the U.S. Army Corps of Engineers. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (July 1973). <u>Flood Insurance Study, Township of Madison, New Jersey</u> prepared by the U.S. Army Corps of Engineers. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (June 1973). <u>Flood Insurance Study, City of Long Branch, New Jersey</u> prepared by the U.S. Army Corps of Engineers. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (July 1973). <u>Flood Insurance Study, Township of Old Bridge, New Jersey</u> prepared by the U.S. Army Corps of Engineers. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (April 1973). <u>Flood Insurance Study, Borough of Monmouth Beach, New Jersey</u> prepared by the U.S. Army Corps of Engineers. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (April 1973). <u>Flood Insurance Study</u>, <u>Borough of Rumson</u>, <u>New Jersey</u> prepared by the U.S. Army Corps of Engineers. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (January 7, 1972). <u>Flood Insurance Study, Borough of Point Pleasant, Ocean County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (November 12, 1971). <u>Flood Insurance Study, Borough of Manasquan, Monmouth</u> <u>County, New Jersey</u>. Washington, D.C.

U.S. Department of the Interior, Bureau of Reclamation. (1974). <u>Design of Small Dams</u>. Washington, D.C.

U.S. Department of the Interior, Geological Survey. (Retrieved December 2006). Water Resources, <u>USGS 01405303</u> <u>Manalapan Brook at Charleston Springs</u>, <u>New Jersey</u>. National Water Information System: Web Interface http://waterdata.usgs.gov/nwis/inventory.

U.S. Department of the Interior, Geological Survey. (Retrieved December 2006). Water Resources, <u>USGS 01404310 Manalapan Brook at Millhurst</u>, <u>New Jersey</u>. National Water Information System: Web Interface. http://waterdata.usgs.gov/nwis/inventory.

U.S. Department of the Interior, Geological Survey. (Retrieved December 2006). Water Resources, <u>USGS 01405330 Manalapan Brook near Englishtown, New Jersey</u>. National Water Information System: Web Interface. http://waterdata.usgs.gov/nwis/inventory.

U.S. Department of the Interior, Geological Survey. (Retrieved December 2006). Water Resources, <u>USGS 01405335 Manalapan Brook near Manalapan, New Jersey</u>. National Water Information System: Web Interface. http://waterdata.usgs.gov/nwis/inventory.

U.S. Department of the Interior, Geological Survey. (Retrieved December 2006). Water Resources, <u>USGS 01405400 Manalapan Brook at Spotswood, New Jersey</u>. National Water Information System: Web Interface. http://waterdata.usgs.gov/nwis/inventory.

U.S. Department of the Interior, Geological Survey. (2002). <u>The National Flood</u> <u>Frequency Program, Version 3: A Computer Program for Estimating Magnitude and</u> <u>Frequency of Floods for Ungaged Sites, Water-Resources Investigations Report 02-4168</u>. Reston, Virginia.

U.S. Department of the Interior, Geological Survey. (January 30, 1998). <u>Users Manual</u> for Program PEAKFQ, Annual Flood Frequency Analysis Using Bulleting 17B <u>Guidelines</u>. Reston, Virginia.

U.S. Department of the Interior, Geological Survey. (1994). <u>Nationwide Summary of</u> <u>U.S. Geological Survey Regional Regression Equations for Estimation of Magnitude and</u> <u>Frequency of Floods for Ungaged Sites, 1993, Water-Resources Investigation Report 94-</u> <u>4002</u>. Reston, Virginia.

U.S. Department of the Interior, Geological Survey, Interagency Advisory Committee. (March 1982). <u>Guidelines for Determining Flood Flow Frequency</u>, Bulletin 17B. Reston, Virginia.

U.S. Department of the Interior, Geological Survey. (1954, Photorevised 1981). <u>7.5-Minute Series Topographic Maps.</u> Scale 1:24,000, Contour Interval 20 Feet: Sandy Hook, New Jersey.

U.S. Department of the Interior, Geological Survey. (August 1978). <u>Log-Pearson Type</u> <u>III Flood Flow Frequency Analysis</u>. Trenton, New Jersey.

U.S. Department of the Interior, Geological Survey. (1974). <u>A Summary of Peak Stages</u> and Discharges for the Flood of August 1973 in New Jersey.

U.S. Department of the Interior, Geological Survey. (1973). <u>Map of Flood-Prone Areas</u>. Scale 1:24,000: Adelphia, New Jersey.

U.S. Department of the Interior, Geological Survey. (1973). <u>Map of Flood-Prone Areas</u>. Scale 1:24,000: Farmingdale, New Jersey.

U.S. Department of the Interior, Geological Survey. (1973). <u>Map of Flood-Prone Areas</u>. Scale 1:24,000: Freehold, New Jersey.

U.S. Department of the Interior, Geological Survey. (1973). <u>Map of Flood-Prone Areas</u>. Scale 1:24,000: Marlboro, New Jersey.

U.S. Department of the Interior, Geological Survey. (1973). <u>Map of Flood-Prone Areas</u>. Scale 1:24,000: Roosevelt, New Jersey.

U.S. Department of the Interior, Geological Survey. (1973). <u>7.5-Minute Series</u> <u>Topographic Maps</u>. Scale 1:24,000: Adelphia, New Jersey.

U.S. Department of the Interior, Geological Survey. (1973). <u>7.5-Minute Series</u> <u>Topographic Maps</u>. Scale 1:24,000: Farmingdale, New Jersey.

U.S. Department of the Interior, Geological Survey. (1973). <u>7.5-Minute Series</u> <u>Topographic Maps</u>. Scale 1:24,000: Freehold, New Jersey.

U.S. Department of the Interior, Geological Survey. (1973). <u>7.5-Minute Series</u> <u>Topographic Maps</u>. Scale 1:24,000: Marlboro, New Jersey.

U.S. Department of the Interior, Geological Survey. (1973). <u>7.5-Minute Series</u> <u>Topographic Maps</u>. Scale 1:24,000: Roosevelt, New Jersey.

U.S. Department of the Interior, Geological Survey. (1953; Photorevised 1972). <u>7.5-Minute Series Topographic Maps</u>. Scale 1:24,000, Contour Interval 20 Feet: Freehold, New Jersey.

U.S. Department of the Interior, Geological Survey. (1972). <u>Map of Flood Prone Areas</u>: Trenton, New Jersey.

U.S. Department of the Interior, Geological Survey. (1953; Photorevised 1971). <u>7.5-Minute Series Topographic Maps.</u> Scale 1:24,000, Contour Interval 20 Feet: Point Pleasant, New Jersey.

U.S. Department of the Interior, Geological Survey. (1970). <u>7.5-Minute Series Maps</u>, <u>Flood-Prone Area Quadrangle</u>. Scale 1:24,000, Contour Interval 10 Feet: Allentown, New Jersey.

U.S. Department of the Interior, Geological Survey (1957; Photorevised 1970). <u>7.5-Minute Series Topographic Maps</u>. Scale 1:24,000, Contour Interval 10 Feet: Allentown, New Jersey.

U.S. Department of the Interior, Geological Survey (1957; Photorevised 1970). <u>7.5-Minute Series Topographic Maps</u>. Scale 1:24,000, Contour Interval 20 Feet: Jamesburg, New Jersey.

U.S. Department of the Interior, Geological Survey (1954; Photorevised 1970). <u>7.5-Minute Series Topographic Maps</u>. Scale 1:24,000, Contour Interval 20 Feet: Asbury Park, New Jersey.

U.S. Department of the Interior, Geological Survey. (1954, Photorevised 1970). <u>7.5-</u> <u>Minute Series Topographic Maps</u>. Scale 1:24,000, Contour Interval 20 Feet: Marlboro, New Jersey.

U.S. Department of the Interior, Geological Survey. (1944-1954; Photorevised 1970). <u>7.5-Minute Series topographic Maps</u>. Scale 1:24,000, Contour Interval 20 Feet: Long Branch, New Jersey.

U.S. Department of the Interior, Geological Survey. (Photorevised 1970). <u>7.5-Minute</u> Series Topographic Maps. Scale 1:24,000, Contour Interval 20 feet: Keyport, NJ-NY.

U.S. Department of the Interior, Geological Survey. (Photorevised 1970). <u>7.5-Minute</u> <u>Series Topographic Maps</u>. Scale 1:24,000, Contour Interval 20 feet: South Amboy, NJ-NY.

U.S. Department of the Interior, Geological Survey. (1968). Water Supply Paper 1672, Magnitude and Frequency of Floods in the United States, Part 1-B, North Atlantic Slope Basins, New York to York River.

U.S. Department of the Interior, Geological Survey. (1964). <u>Water Resources Circular</u> <u>No. 13</u>. Washington, D.C.

U.S. Department of the Interior, Geological Survey. (1953). <u>7.5-Minute Series</u> <u>Topographic Maps</u>. Scale 1:24,000, Contour Interval 20 Feet: Jamesburg, New Jersey.

U.S. Department of the Interior, Geological Survey. (Published annually). <u>Water</u> <u>Resources Data for New Jersey, Part 1, Surface Water Records</u>. Trenton, New Jersey.

U.S. Department of the Interior, Geological Survey. (Published annually). <u>Water</u> <u>Resources Data for Pennsylvania, Part I, Surface Water Records</u>.

U.S. Department of the Interior, Geological Survey, Water Resources Division. (June 1976). <u>Water Resources Data for New Jersey, Water Year 1975</u> in cooperation with the State of New Jersey.

U.S. Department of Transportation, Federal Highway Administration. (Revised March 1978). Hydraulic Design Series No. 1, <u>Hydraulics of Bridge Waterways</u>. Washington, D.C.

Van Note-Harvey Associates. (1968). <u>Survey of Rocky Brook and Millstone River</u>, <u>Millstone, New Jersey</u>. Trenton, New Jersey.

Water Resources Council. (June 1977). Bulletin 17A, "Guidelines for Determining Flood Flow Frequency". Washington, D.C.

Water Resources Council. (March 1976). Bulletin 17, "Guidelines for Determining Flood Flow Frequency". Washington, D.C.

Water Resources Council. (December 1967). Bulletin 15, "A Uniform Technique for Determining Flood Flow Frequency". Washington, D.C.

(April 12, 1963). <u>Plan of Sanitary Sewerage System for Middletown Township:</u> <u>Topographic Maps</u>. Scale 1"=100', Contour Interval 5 Feet.

(March 1957). National Hurricane Research Project No. 5, "Survey of Meteorological Factors Pertinent to the Reduction of Loss of Life and Property in Hurricane Situations".

10.0 **REVISION DESCRIPTIONS**

This section has been added to provide information regarding significant revisions made since the September 25, 2009, countywide Flood Insurance Study (FIS) was published. Future revisions may be made that do not result in the republishing of the FIS report. To assure that any user is aware of all revisions, it is advisable to contact the community repository of flood-hazard data listed on the FIRM Index. Please also note that as part of this revision the Community Map History table in section 6.0 has been revised.

10.1 June 20, 2018, Revision

Authority and Acknowledgements

The June 20, 2018, revision incorporates the results of coastal analysis for the Boroughs of Highlands, Little Silver, Matawan, and Monmouth Beach in Monmouth Count, NJ. This analysis was performed by Risk Assessment, Mapping, and Planning Partners (RAMPP) for FEMA under contract No. contract No. HSFEHQ-09-D-0369, task order HSFE0209-J-0001. This work was completed in 2012.

Base map information shown on this FIRM was provided in digital format by New Jersey Office of Information Technology (NJOIT), Office of Geographic Information Systems (OGIS). This information was derived from digital orthophotos produced at a scale of 1:2400 (1"=200') with a 1 foot pixel resolution from photography dated 2012.

Coordination

For the June 20, 2018, revision, an initial CCO meeting was held on August 19, 2010, and attended by representatives of NJDEP, RAMPP, FEMA, and local officials. The Flood Risk Review (FRR) meeting was held on August 21, 2013.

The results of the study were reviewed at the final CCO meeting held on September 10, 2014, and attended by representatives of NJDEP, RAMPP, and FEMA, and local officials. All concerns raised at that meeting have been addressed in this study for the revised communities.

Area Studied

The June 20, 2018, revision, includes a new coastal analysis and mapping for the shoreline within the Boroughs of Highlands, Little Silver, Matawan, and Monmouth Beach.

This FIS also incorporates the determinations of letters issued by FEMA resulting in map changes (Letter of Map Revision [LOMR], Letter of Map Revision - based on Fill [LOMR-F], and Letter of Map Amendment [LOMA], as shown in the "Incorporated Letters of Map Change" table below.

INCORPORATED LETTERS OF MAP CHANGE

<u>Community</u>	Flooding Source(s)/Project Identifier	Date Issued	Type
Borough of Shrewsbury	Enclave at Shrewsbury, Block 70.02, Lot 6	May 27, 2014	LOMR

Principal Flood Problems

On September 22, 1992, Tropical Storm Danielle produced rainfall across much of New Jersey. The southwest portion of the state experienced over 3 inches of rain. The storm washed out miles of beaches along the coastline. (National Hurricane Center, 1992)

Hurricane Floyd originally made landfall in Cape Fear, North Carolina, as a Category 2 hurricane on September 16, 1999. The storm crossed over North Carolina and southeastern Virginia, before briefly entered the western Atlantic Ocean. The storm reached New Jersey on September 17, 1999. Record breaking flooding was recorded throughout the State of New Jersey. The Raritan River basin experienced record floods of up to 4.5 ft. higher than any previous record flood crest. The areas of Bound Brook and Manville were especially hit hard. A Federal Emergency Declaration was issued on September 17, 1999. Overall damage estimates for Hurricane Floyd, in the State of New Jersey are estimated around \$250 million dollars. (National Hurricane Center, 1999)

Hurricane Irene came ashore in Little Egg Inlet in Southern New Jersey; on August 28, 2011. In anticipation of the storm, Governor Chris Christy declared a state of emergency on August 25th, with President Barack Obama reaffirming the declaration on August 27th. Mandatory evacuations of approximate 75,000-100,000 Monmouth County residents were ordered. Wind gusts topped off at 63 mph in Sandy Hook and 52 mph in Belmar overnight, according to the National Weather Service, and rain totals reached over 10 inches in many parts of the state. Massive tidal surges caused significant damage to coastal towns, wrecking the boardwalk in Spring Lake and flooding low-lying bay shore towns, such as Keansburg and Union Beach. More severe damage, however, occurred miles inland, in western Monmouth County near the Manasquan River, which had already flooded as a result of heavy rains the week before. 121,000 Monmouth County residents lost power during the storm. Overall damage estimates, for the State of New Jersey, came to over \$1 billion dollars (Associated Press, 2011)

Hurricane Sandy came ashore as an immense tropical storm in Brigantine, New Jersey, on October 29, 2012. Sandy dropped heavy rain on the area; almost a foot in some areas. Wind gust were recorded at 90 mph. A full moon made the high tides 20 percent higher than normal and amplified the storm surge. The New Jersey shore suffered the most damage. Some barrier island communities suffered severe "wash over" including the creation of two temporary inlets. More than 100 homes were

destroyed in Union Beach, including about 30 washed away by the tides. NOAA's gage #8531680 at Sandy Hook, NJ, the high water mark (WHM), which is considered as a stillwater elevation without waves, was 9.21 ft. NAVD88 at 6:00 PM on October 29, 2012. Nearby USGS HWMs are 11.57 and 11.06 ft. NAVD88. Seaside communities were damaged and destroyed up and down the coastline. Some 263,000 households had lost power in Monmouth County. Initial reports suggest that over 12,000 homes and businesses were damaged or destroyed by the storm. Governor Chris Christy declared a state of emergency on October 31. Hurricane Sandy is estimated to cost the State of New Jersey over \$36 billion. (Associated Press, 2012)

Flood Protection Measures

Monmouth County has no levee type structure that would require analysis of levee failure and removal under Section D.2.10.3.4.1 of the Draft Atlantic Ocean and Gulf of Mexico Coastal Guidelines update.

In alignment with standard practice used in other FEMA studies, all coastal armoring structures and beach stabilization structures have been included in the analysis without adjusting the analysis to remove the structure or reduce the effects of the structure.

Coastal Analysis

The FEMA, Region II office, initiated a study in 2009 to update the coastal storm surge elevations within the states of New York and New Jersey including the Atlantic Ocean, the Barnegat Bay, the Raritan Bay, the Jamaica Bay, the Long Island Sound and their tributaries. The study replaces outdated coastal analyses as well as previously published storm surge stillwater elevations for Boroughs of Highlands, Little Silver, Matawan, and Monmouth Beach in Monmouth Count, NJ, and serves as the basis for updated FIRMs. The coastal study for the New Jersey Atlantic Ocean coast and New York City coast was conducted for FEMA by RAMPP under contract HSFEHQ-09-D-0369, task order HSFE02-09-J-0001.

The region-wide storm surge modeling system includes the Advanced Circulation Model for Oceanic, Coastal and Estuarine Waters (ADCIRC) for simulation of 2dimensional hydrodynamics. ADCIRC was dynamically coupled to the unstructured numerical wave model Simulating Waves Nearshore (unSWAN) to calculate the contribution of waves to total storm surge (FEMA, 2010). The resulting model system is typically referred to as SWAN+ADCIRC (FEMA, 2010).

Model skill was assessed by quantitative comparison of model output to wind, wave, water level, and high water mark observations. The model was then used to re-create 30 historical extra-tropical storms and 157 synthetic hurricanes to create a synthetic water elevation record from which the 10-, 2-, 1-, and 0.2- percent annual chance of exceedence elevations were determined.

For the New York and New Jersey surge study, wave setup was determined directly from the coupled wave and storm surge model. The total stillwater elevation (SWEL) including storm surge and wave setup was then used for the erosion and wave modeling.

The total stillwater elevations for the 10-, 2-, 1-, and 0.2- percent annual chance floods determined for the primary sources of flooding in Monmouth County: Atlantic Ocean, Little Silver Creek, Manahassett Creek, Raritan Bay, Sandy Hook Bay, and Shrewsbury River are shown in the Table below, "Revised Transect Data."

The Borough of Highlands is located along the shoreline of Raritan Bay and Sandy Hook Bay and is partially sheltered by the Sandy Hook National Park barrier island. Applicable coastal study transects are Transects 22-23 and 69a. The location of these transects is shown in the Revised Transect Location Map.

The Borough of Little Silver is located within the back bay area of the Shrewsbury River near Town Neck Creek and Little Silver Creek. Applicable coastal study transects are Transects 47-49. The location of these transects is shown in the Revised Transect Location Map.

The Borough of Matawan is located inland of the Raritan Bay shoreline and does not include coastal study transects within the Borough however, is impacted by coastal flooding that was defined by Transects 3 and 4 that are located along the Raritan Bay shoreline in Aberdeen Township and Keyport Borough. The location of these transects is shown in the Revised Transect Location Map.

The Borough of Monmouth Beach is located along the Atlantic Coast shoreline and the Shrewsbury River and Manahassett Creek back bay shoreline. Applicable coastal study transects include Transects 76-79 along the open coast facing the Atlantic and Transects 59-61 and 62a located along the Shrewsbury River back bay shoreline. The location of these transects is shown in the Revised Transect Location Map.

For the updated coastal study the primary frontal dune (PFD) was delineated and used for erosion modeling along the Atlantic Coast. A review of the geology and shoreline type in Ocean County supported using FEMA's standard erosion methodology for PFDs, referred to as the "540 rule," (FEMA, 2007). Beach profiles collected before and after Hurricane Sandy were also used to qualitatively assess the beach response during an extreme event and found to be in good agreement with standard erosion methodology.

In following revised transect data table, the 10-, 2-, 1-, and 0.2-percent annual chance stillwater elevations for each transect are provided along with the starting wave height and period.

		Starting Wave Conditions for the 1% Annual Chance			Starting Stillwater Elevations (ft NAVD88) Range of Stillwater Elevations (ft NAVD88)			
			Significant					
			Wave Height	Peak Wave	10% Annual	2% Annual	1% Annual	0.2% Annual
Flood Source	Transect	Coordinates	Hs (ft)	Period	Chance	Chance	Chance	Chance
		N 40 442110			82	11.3	12.5	16.0
		W 74 207530	4 31	4 72	82-83	11 3 -11 4	12 4 -12 7	16.0 - 16.2
Raritan Bay	3							
		N 40.436054						
		W 74.208669	3.56	4.40	8.3	11.3	12.7	16.1
Raritan Bay	4							
		N 40.411452					11.1	14.4
Sandy Hook Bay	22	W 74.000799	3.38	3.17	7.3	9.9	10.8 - 11.1	14.3 - 14.4
		N 40.403082				9.6	10.8	14.1
Sandy Hook Bay	23	W 73.983908	2.5	2.76	7.0	9.3 - 9.6	10.6 - 10.8	13.8 - 14.1
		N 40.338419			5.3		7.7	9.2
Little Silver Creek	47	W 74.029171	1.25	1.97	5.2-5.3	7.0	7.6-7.7	9.1-9.2
		N 40.337520			5.2	6.9	7.6	9.0
Little Silver Creek	48	W 74.013620	1.94	2.45	5.0-5.5	6.8-6.9	7.5-7.7	8.9-9.2
		N 40.325768			5.3	7.0	7.6	9.0
Shrewsbury River	49	W 74.021775	1.34	2.08	5.3-5.5	6.9-7.0	7.5-7.7	8.9-9.0
		N 40.326799				6.8	7.5	8.9
		W 73.984531	0.87	1.61	5.2	6.7 - 6.8	7.3 - 9.0	8.8 - 9.3
Manahassett Creek	59							
		N 40.327868				6.9	7.5	8.9
		W 73.988719	0.94	1.76	5.2	6.7 - 6.9	7.2 - 7.6	8.7 - 8.9
Manahassett Creek	60							
				2.38	5.0	6.0		
		N 40.332107	1.00		5.2	6.9	7.5	8.9
		w 73.994179	1.88		5.1 - 5.2	6.7 - 6.9	7.2 - 7.6	8.7 - 8.9
Manahassett Creek	61							

REVISED TRANSECT DATA

		Starting Wave Conditions for the 1% Annual			Starting Stillwater Elevations (ft NAVD88)			
		Chance			Range of Stillwater Elevations (ft NAVD88)			
			Significant					
			Wave Height	Peak Wave	10% Annual	2% Annual	1% Annual	0.2% Annual
Flood Source	Transect	Coordinates	<u>Hs (ft)</u>	Period	Chance	Chance	Chance	Chance
		N 40.338154					7.4	8.8
Shrewsbury River		W 73.986729	1.84	2.52	5.1	6.7	7.1 - 7.4	8.6 - 8.8
	62a							
		N 40.391966						
		W 73.974095			6.8	9.3	10.5	13.3
Atlantic Ocean	69a		5.01	11.92	6.1-6.9	9.3 - 9.8	9.3 - 10.8	11.7 - 13.8
		N 40.343408						
		W 73.972439	4.74		6.6	8.9	9.9	12.5
Atlantic Ocean	76			12.56	5.1-6.6	6.5-7.89	7.2-9.9	8.5-12.7
		N 40.337336			6.9			
		W 73.973017	4.96		5.1-7.1	8.9	10.4	12.9
Atlantic Ocean	77			12.76		6.6-8.9	7.1-10.5	8.7-13.0
		N 40.330540						
		W 73.973335	4.85		6.8	9.1	10.1	12.7
Atlantic Ocean	78			12.53	5.2-6.8	6.7-9.1	7.2-10.1	8.7-12.7
		N 40.323710			6.9	9.2	10.7	13.5
Atlantic Ocean	79	W 73.974741	5.11	12.58	6.7-7.0	6.7-9.2	8.9-10.9	9.3-13.8

Each transect defined within the Region II study area was evaluated for the applicability of wave runup, and if necessary, the appropriate runup methodology was selected and applied to each transect. Runup elevations were then compared to WHAFIS results to determine the dominant process affecting BFEs and associated flood hazard levels. Based on wave runup rates, wave overtopping was computed following the FEMA 2007 Guidelines and Specifications (FEMA, 2007).

The 3-foot wave has been determined to be the minimum size wave capable of causing major damage to conventional wood frame or brick veneer structures. The one exception to the 3-foot wave criteria is where a PFD exists. The limit of the coastal high hazard area then becomes the landward toe of the PFD or where a 3-foot or greater breaking wave exists, whichever is most landward.

Post-storm field visits and laboratory tests have confirmed that wave heights as small as 1.5 feet can cause significant damage to structures when constructed without consideration to the coastal hazards. Additional flood hazards associated with coastal waves include floating debris, high velocity flow, erosion, and scour which can cause damage to Zone AE-type construction in these coastal areas. To help community officials and property owners recognize this increased potential for damage due to wave action in the AE zone, FEMA issued guidance in December 2008 on identifying and mapping the 1.5-foot wave height line, referred to as the Limit of Moderate Wave Action (LiMWA). See Updated Transect Schematic below.

Coastal analysis results from Transects 3 and 4 located along the shoreline of Raritan Bay in Aberdeen Township and Keyport Borough were used to map the coastal hazard areas within the Borough of Matawan. Wave Height Analysis for Flood Insurance Study (WHAFIS) results for these transects were used to map the offshore and overland coastal flood zones and associated Base Flood Elevations (BFEs).

The 1-percent annual chance boundary was delineated at the inland extent of the 1-percent annual chance 192tillwater elevation. LiMWA was delineated at the inland extent of the 1.5 foot wave within the Coastal AE 14.

Coastal analysis results from Transects 22-23 and 69a were used to map the coastal hazard areas within the Borough of Highlands Borough. WHAFIS results for these transects were used to map the offshore and overland coastal flood zones and associated BFEs.

The 1-percent annual chance boundary was delineated at the inland extent of the 1-percent annual chance 192tillwater elevation. LiMWA was delineated at the inland extent of the 1.5 foot wave within the Coastal AE13 and 12.

Coastal analysis results from Transects 47-49 were used to map the coastal hazard areas within the Borough of Little Silver. WHAFIS results for these transects were used to map the offshore and overland coastal flood zones and associated BFEs.

The 1-percent annual chance boundary was delineated at the inland extent of the 1-percent annual chance 193tillwater elevation. LiMWA was delineated at the inland extent of the 1.5 foot wave within the Coastal AE 9 and along the boundary of the AE10/AE8.

Coastal analysis results from Transects 76-79 were used to map the coastal hazard areas along the Atlantic Coast within the Borough of Monmouth Beach. Wave Runup elevations were mapped and overtopping was calculated and mapped where applicable (AO zone mapped between Transect 78 and 79) along the Atlantic Coast.

The 1% boundary was delineated to the Runup elevation or PFD whichever was more conservative. Runup transition zones (between changing BFEs) offshore are mapped as perpendicular lines extending from the inland extent of the VE zone offshore. LiMWA was delineated along the 1-percent annual chance boundary.

Coastal analysis from Transects 59-62, and 62a were used to map the coastal hazard areas along the Shrewsbury River within the Borough of Monmouth Beach . WHAFIS results for these transects were used to map the offshore and overland coastal flood zones and associated BFEs.

The 1-percent annual chance boundary was delineated at the inland extent of the 1-percent annual chance stillwater elevation. LiMWA was delineated at the inland extent of the 1.5 foot wave within the Coastal AE 8 and along the boundary of the AE9/AE8.

Updated Transect Schematic

All flood elevations shown in this FIS report and on the FIRM are referenced to NAVD 88. Structure and ground elevations in the community must, therefore, be referenced to NAVD 88. It is important to note that adjacent communities may be referenced to NGVD 29. This disagreement in datum may result in apparent differences in base flood elevations across the corporate limits between the communities for equivalent flood depths.

Prior versions of the FIS report and FIRM were referenced to NGVD 29. The elevations shown in the FIS report and on the FIRMs for Monmouth County are referenced to NAVD 88. Ground, structure, and flood elevations may be compared and/or referenced to NGVD 29 by applying a standard conversion factor. The conversion factor to NGVD 29 is +1.1. The conversion between the datums may be expressed as an equation:

NAVD 88 + 1.1 feet = NGVD 29

The BFEs shown on the FIRM represent whole-foot rounded values. For example, a BFE of 102.4 will appear as 102 on the FIRM and 102.6 will appear as 103. Therefore, users that wish to convert the elevations in this FIS to NGVD 29 should apply the stated conversion factor(s) to elevations shown on the Flood Profiles and supporting data tables in the FIS report, which are shown at a minimum to the nearest 0.1 foot.

For more information on NAVD 88, see Converting the National Flood Insurance Program to the North American Vertical Datum of 1988, FEMA Publication FIA20/June 1992, or contact the Spatial Reference System Division, National Geodetic Survey, NOAA, Silver Spring Metro Center, 1315 East-West Highway, Silver Spring, Maryland 20910 (Internet address http://www.ngs.noaa.gov).

Bibliography and References

Associated Press, (2011) www.ap.org

Associated Press, (2012) www.ap.org

Federal Emergency Management Agency, <u>Region II Coastal Storm Surge Study</u> <u>Reports</u>, 2010.

Federal Emergency Management Agency. <u>Guidelines and Specifications for Flood</u> <u>Hazard Mapping Partners, Appendix D: Atlantic Ocean and Gulf of Mexico Coastal</u> <u>Guidelines Update</u>, 2007.

National Hurricane Center. (1992) Tropical Strom Danielle Report.

National Hurricane Center. (1999) Hurricane Floyd Report.